ArticleOriginal scientific text
Title
Stabilité du spectre ponctuel d'opérateurs de Toeplitz généralisés
Authors 1
Affiliations
- UFR de Mathématiques, Université de Bordeaux-1, 351, cours de la Libération, 33405 Talence Cedex, France
Abstract
A general scheme based on a commutation relation is proposed to give rise to a definition of generalized Toeplitz operators on a Banach space. Under suitable conditions the existence of a symbol is proved and its continuation to algebras generated by generalized Toeplitz operators is constructed. A stability theorem for the point spectrum of an operator from generalized Toeplitz algebras is established; as examples one considers the standard and operator valued Toeplitz operators on weighted Hardy spaces and on spaces of functions (distributions) with weighted Fourier transforms.
Keywords
Toeplitz and Wiener-Hopf operators, multipliers, quasi-continuous functions
Bibliography
- J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, 1976.
- A. Bottcher and B. Silbermann, Analysis of Toeplitz Operators, Akademie-Verlag, Berlin, 1989.
- A. Devinatz and M. Shinbrot, General Wiener-Hopf operators, Trans. Amer. Math. Soc. 145 (1969), 467-494.
- R. Douglas, Banach Algebra Techniques in the Theory of Toeplitz Operators, CBMS Regional Conf. Ser. in Math. 15, Amer. Math. Soc., 1973.
- R. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
- D. A. Herrero, T. J. Taylor and L. V. Wang, Variations of the point spectrum under compact perturbations, dans : Oper. Theory Adv. Appl. 32, Birkhäuser, 1988, 113-157.
- T. Kato, Perturbation Theory for Linear Operators, Springer, 1976.
- L. N. Nikol'skaya, Criteria for stability of the point spectrum under completely continuous perturbations, Math. Notes 19 (1975), 946-949.
- L. N. Nikol'skaya, Stability of the eigenvalues of certain types of singular integral equations, J. Soviet Math. 32 (1986), 513-519.
- L. N. Nikol'skaya, Stability of characteristic values of singular integral equations, ibid. 50 (1990), 2027-2031.
- N. Nikolski, Treatise on the Shift Operator, Springer, 1986.
- L. Page, Bounded and compact vectorial Hankel operators, Trans. Amer. Math. Soc. 150 (1970), 529-539.
- R. Rochberg, Toeplitz operators on weighted
spaces, Indiana Univ. Math. J. 26 (1977), 291-298. - M. Rosenblum, Vectorial Toeplitz operators and the Fejér-Riesz Theorem, J. Math. Anal. Appl. 23 (1968), 139-147.
- I. Singer, Theory of Bases, Vol. 1, Springer, 1975.
- S. Treil, Geometric aspects of the spectral function theory, dans : Oper. Theory Adv. Appl. 42, Birkhäuser, 1989, 209-280.
- I. E. Verbitski, Sur les multiplicateurs dans les espaces
pondérés, dans : Propriétés spectrales des opérateurs, Mat. Issled. 45, Shtiintsa, Kishinev, 1977 (en russe).