ArticleOriginal scientific textReproducing properties and
Title
Reproducing properties and -estimates for Bergman projections in Siegel domains of type II
Authors 1, 1
Affiliations
- Department of Mathematics, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
Abstract
On homogeneous Siegel domains of type II, we prove that under certain conditions, the subspace of a weighted -space (0 < p < ∞) consisting of holomorphic functions is reproduced by a weighted Bergman kernel. We also obtain some -estimates for weighted Bergman projections. The proofs rely on a generalization of the Plancherel-Gindikin formula for the Bergman space .
Bibliography
- [B] D. Békollé, Solutions avec estimations de l'équation des ondes, in: Sém. Analyse Harmonique 1983-1984, Publ. Math. Orsay, 1985, 113-125.
- [BeBo] D. Békollé and A. Bonami, Estimates for the Bergman and Szegö projections in two symmetric domains of
, Colloq. Math. 68 (1995), 81-100. - [CR] R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in
, Astérisque 77 (1980), 11-66. - [DK] M. M. Dzhrbashyan and A. O. Karapetyan, Integral representations in a generalized upper half-plane, Izv. Akad. Nauk Armenii Mat. 25 (6) (1990), 507-533.
- [FRu] F. Forelli and W. Rudin, Projections on spaces of holomorphic functions on balls, Indiana Univ. Math. J. 24 (1974), 593-602.
- [G] S. G. Gindikin, Analysis in homogeneous domains, Russian Math. Surveys 19 (4) (1964), 1-89, 379-388 and ibid. 28 (1973), 688.
- [KoS] A. Korányi and E. M. Stein,
spaces of generalized half-planes, Studia Math. 44 (1972), 379-388. - [P] J. Peetre, A reproducing kernel, Boll. Un. Mat. Ital. (6) 3-A (1984), 373-382.
- [R] R. Rochberg, Interpolation in Bergman spaces, Michigan Math. J. 29 (1982), 229-236.
- [T] A. Temgoua Kagou, Domaines de Siegel de type II: noyau de Bergman, Thèse de
cycle, Université de Yaoundé I, 1993.