ArticleOriginal scientific text

Title

Double exponential integrability, Bessel potentials and embedding theorems

Authors 1, 2, 3

Affiliations

  1. Centre for Mathematical Analysis and its Applications, The University of Sussex, Falmer, Brighton BN1 9QH, England
  2. Department of Mathematics, Czech University of Agriculture, 160 21 Praha 6, Czech Republic
  3. Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Prague 1, Czech Republic.

Abstract

This paper is a continuation of [5] and provides necessary and sufficient conditions for double exponential integrability of the Bessel potential of functions from suitable (generalized) Lorentz-Zygmund spaces. These results are used to establish embedding theorems for Bessel potential spaces which extend Trudinger's result.

Keywords

Bessel potential, Riesz potential, generalized Lorentz-Zygmund spaces, exponential integrability, Hardy inequality, Orlicz spaces, Bessel potential spaces

Bibliography

  1. R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
  2. C. Bennett and K. Rudnick, On Lorentz-Zygmund spaces, Dissertationes Math. 175 (1980).
  3. C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, 1988.
  4. H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations 5 (1980), 773-789.
  5. D. E. Edmunds, P. Gurka and B. Opic, Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces, Indiana Univ. Math. J. (1995), to appear.
  6. D. E. Edmunds and M. Krbec, Two limiting cases of Sobolev imbeddings, preprint no. 89, Math. Inst. Czech Acad. Sci., Prague, 1994, 8 pp.
  7. W. D. Evans, B. Opic and L. Pick, Interpolation of operators on scales of generalized Lorentz-Zygmund spaces, preprint no. 99, Math. Inst. Czech Acad. Sci., Prague, 1995, 57 pp.
  8. N. Fusco, P. L. Lions and C. Sbordone, Some remarks on Sobolev embeddings in borderline cases, preprint no. 25, Università degli Studi di Napoli "Federico II", 1993, 7 pp.
  9. A. Kufner, O. John and S. Fučík, Function Spaces, Academia, Prague, 1977.
  10. G. Lorentz, On the theory of spaces Λ, Pacific J. Math. 1 (1951), 411-429.
  11. F. J. Martín-Reyes and E. T. Sawyer, Weighted inequalities for Riemann-Liouville fractional integrals of order one and greater, Proc. Amer. Math. Soc. 106 (1989) 727-733.
  12. R. O'Neil, Convolution operators and L(p,q) spaces, Duke Math. J. 30 (1963), 129-142.
  13. E. T. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), 145-158.
  14. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970.
  15. V. D. Stepanov, Weighted inequalities for a class of Volterra convolution operators, J. London Math. Soc. 45 (1992), 232-242.
  16. V. D. Stepanov, The weighted Hardy's inequality for non-increasing functions, Trans. Amer. Math. Soc. 338 (1993), 173-186.
  17. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.
  18. N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-484.
  19. W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Math. 120, Springer, Berlin, 1989.
Pages:
151-181
Main language of publication
English
Received
1994-09-23
Accepted
1995-03-01
Published
1995
Exact and natural sciences