ArticleOriginal scientific text

Title

Lp weighted inequalities for the dyadic square function

Authors 1

Affiliations

  1. Mathematics Graduate School of Information Sciences, Tohoku University, Aoba-ku, Sendai-shi, 980, Japan

Abstract

We prove that ʃ(Sdf)pVdxCp,nʃ|f|pMd([p2]+2)Vdx, where Sd is the dyadic square function, Md(k) is the k-fold application of the dyadic Hardy-Littlewood maximal function and p > 2.

Keywords

dyadic square function, dyadic maximal function, weighted inequality

Bibliography

  1. [CWW] S. Y. A. Chang, J. M. Wilson and T. H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv. 60 (1985), 217-246.
  2. [CW] S. Chanillo and R. L. Wheeden, Some weighted norm inequalities for the area integral, Indiana Univ. Math. J. 36 (1987), 277-294.
  3. [C] R. R. Coifman, A real-variable characterization of Hp, Studia Math. 51 (1974), 269-274.
  4. [D] W. R. Derrick, Open problems in singular integral theory, J. Integral Equations Appl. 5 (1993), 23-28.
  5. [Gn] J. B. Garnett, Bounded Analytic Functions, Pure and Appl. Math. 96, Academic Press, 1981.
  6. [Gs] A. M. Garsia, Martingale Inequalities, Seminar Notes on Recent Progress, Benjamin, 1973.
  7. [P] C. Pérez, Weighted norm inequalities for singular integral operators, J. London Math. Soc. (2) 49 (1994), 296-308.
  8. [S1] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
  9. [S2] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.
  10. [W1] J. M. Wilson, Weighted inequalities for the dyadic square functions without dyadic A, Duke Math. J. 55 (1987), 19-49.
  11. [W2] J. M. Wilson, A sharp inequality for the square function, ibid., 879-887.
  12. [W3] J. M. Wilson, Lp weighted norm inequalities for the square function 0< p< 2, Illinois J. Math. 33 (1989), 361-366.
  13. [W4] J. M. Wilson, Weighted inequalities for the square function, in: Contemp. Math. 91, Amer. Math. Soc., 1989, 299-305.
  14. [W5] J. M. Wilson, Weighted norm inequalities for the continuous square function, Trans. Amer. Math. Soc. 314 (1989), 661-692.
  15. [W6] J. M. Wilson, Chanillo-Wheeden inequalities for 0< p≤ 1, J. London Math. Soc. (2) 41 (1990), 283-294.
  16. [W7] J. M. Wilson, Some two-parameter square function inequalities, Indiana Univ. Math. J. 40 (1991), 419-442.
Pages:
135-149
Main language of publication
English
Received
1994-08-30
Accepted
1995-03-03
Published
1995
Exact and natural sciences