ArticleOriginal scientific text

Title

Chaotic behavior of infinitely divisible processes

Authors 1, 2, 3

Affiliations

  1. Department of Statistics, University of North Carolina, Chapel Hill, North Carolina 27599-3260, U.S.A.,
  2. Department of Mathematical Sciences, IUPUI, Indianapolis, Indiana 46202-3216, U.S.A.
  3. Hugo Steinhaus Center for Stochastic Methods, Technical University of Wrocław, 50-370 Wrocław, Poland.

Abstract

The hierarchy of chaotic properties of symmetric infinitely divisible stationary processes is studied in the language of their stochastic representation. The structure of the Musielak-Orlicz space in this representation is exploited here.

Keywords

infinitely divisible process, ergodicity and mixing, stationary process, stochastic representation, Musielak-Orlicz space, hierarchy of chaos

Bibliography

  1. R. J. Adler, S. Cambanis and G. Samorodnitsky (1990), On stable Markov processes, Stochastic Process. Appl. 34, 1-17.
  2. R. M. Blumenthal (1957), An extended Markov property, Trans. Amer. Math. Soc. 85, 52-72.
  3. S. Cambanis, C. D. Hardin and A. Weron (1987), Ergodic properties of stationary stable processes, Stochastic Process. Appl. 24, 1-18.
  4. S. Cambanis and A. Ławniczak (1989), Ergodicity and mixing of infinitely divisible processes, unpublished preprint.
  5. I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai (1982), Ergodic Theory, Springer, Berlin.
  6. S. V. Fomin (1950), Normal dynamical systems, Ukrain. Mat. Zh. 2, 25-47 (in Russian).
  7. U. Grenander (1950), Stochastic processes and statistical inference, Ark. Mat. 1, 195-277.
  8. A. Gross (1994), Some mixing conditions for stationary symmetric stable stochastic processes, Stochastic Process. Appl. 51, 277-285.
  9. A. Gross and J. B. Robertson (1993), Ergodic properties of random measures on stationary sequences of sets, ibid. 46, 249-265.
  10. M. Hernández and C. Houdré (1993), Disjointness results for some classes of stable processes, Studia Math. 105 235-252.
  11. P. Kokoszka and K. Podgórski (1992), Ergodicity and weak mixing of semistable processes, Probab. Math. Statist. 13, 239-244.
  12. A. Lasota and M. C. Mackey (1994), Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, Springer, New York.
  13. V. P. Leonov (1960), The use of the characteristic functional and semiinvariants in the theory of stationary processes, Dokl. Akad. Nauk SSSR 133, 523-526 (in Russian).
  14. G. Maruyama (1949), The harmonic analysis of stationary stochastic processes, Mem. Fac. Sci. Kyusyu Ser. Mat. IV 1, 49-106.
  15. G. Maruyama (1970), Infinitely divisible processes, Probab. Theory Appl. 15, 3-23.
  16. J. Musielak (1983), Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, New York. D. Newton (1968), On a principal factor system of a normal dynamical system, J. London Math. Soc. 43, 275-279.
  17. K. Podgórski (1992), A note on ergodic symmetric stable processes, Stochastic Process. Appl. 43, 355-362.
  18. K. Podgórski and A. Weron (1991), Characterization of ergodic stable processes via the dynamical functional, in: Stable Processes and Related Topics, S. Cambanis et al. (eds.), Birkhäuser, Boston, 317-328.
  19. B. S. Rajput and J. Rosiński (1989), Spectral representations of infinitely divisible processes, Probab. Theory Related Fields 82, 451-487.
  20. V. A. Rokhlin (1964), Exact endomorphisms of Lebesgue space, Amer. Math. Soc. Transl. (2) 39, 1-36.
  21. P. Walters (1982), An Introduction to Ergodic Theory, Springer, Berlin.
  22. A. Weron (1985), Harmonizable stable processes on groups: spectral, ergodic and interpolation properties, Z. Wahrsch. Verw. Gebiete 68, 473-491.
Pages:
109-127
Main language of publication
English
Received
1993-11-29
Accepted
1995-01-30
Published
1995
Exact and natural sciences