ArticleOriginal scientific text

Title

A lifting theorem for locally convex subspaces of L0

Authors 1

Affiliations

  1. Department of Mathematics, University of Illinois, Urbana, Illinois 61801, U.S.A.

Abstract

We prove that for every closed locally convex subspace E of L0 and for any continuous linear operator T from L0 to L0E there is a continuous linear operator S from L0 to L0 such that T = QS where Q is the quotient map from L0 to L0E.

Bibliography

  1. T. Aoki, Locally bounded linear topological spaces, Proc. Imp. Acad. Tokyo 18 (1942), No. 10
  2. N. J. Kalton and N. T. Peck, Quotients of Lp for 0≤ p<1, Studia Math. 64 (1979), 65-75.
  3. N. J. Kalton, N. T. Peck and J. W. Roberts, An F-space Sampler, Cambridge Univ. Press, Cambridge, 1984.
  4. S. Kwapień, On the form of a linear operator in the space of all measurable functions, Bull. Acad. Polon. Sci. 21 (1973), 951-954.
  5. R. E. A. C. Paley and A. Zygmund, On some series of functions III, Proc. Cambridge Philos. Soc. 28 (1932), 190-205.
  6. N. T. Peck and T. Starbird, L0 is ω-transitive, Proc. Amer. Math. Soc. 83 (1981), 700-704.
  7. S. Rolewicz, On a certain class of linear metric spaces, Bull. Acad. Polon. Sci. 5 (1957), 471-473.
  8. P. Turpin, Convexités dans les espaces vectoriels topologiques généraux, Dissertationes Math. 131 (1976).
Pages:
73-85
Main language of publication
English
Received
1994-07-22
Accepted
1995-01-23
Published
1995
Exact and natural sciences