ArticleOriginal scientific text
Title
Two-weight mixed ф-inequalities for the one-sided maximal function
Authors 1
Affiliations
- Department of Pure Mathematics, The University of Leeds, Leeds LS2 9JT, U.K.
Abstract
Suppose u, v, w, and t are weight functions on an appropriate measure space (X,μ), and , are Young functions satisfying a certain relationship. Let T denote an operator to be specified below. The main purpose of this paper is to characterize
(i) the strong type mixed Φ-inequality
,
(ii) the weak type mixed Φ-inequality
Φ_{2}(λw)tdμ) ≤ Φ^{-1}_{1} (ʃ_{X} Φ_{1}(Cfu)vdμ) |{x ∈ X : |Tf(x)| > λ}|_{wdμ} ≤ Φ_{2}Φ^{-1}_{1} (ʃ_{X} Φ_{1}(Cfu/λ)vdμ) M^{+}_{g}!$!; as well to characterize (iii) for the Fefferman-Stein type fractional maximal operator and the Hardy-type operator.
Keywords
Young function, one-sided maximal function, Fefferman-Stein type fractional operator, Hardy-type operator
Bibliography
- S. Bloom and R. Kerman, Weighted norm inequalities for operators of Hardy type, Proc. Amer. Math. Soc. 113 (1991), 135-141.
- S. Bloom and R. Kerman, Weighted
integral inequalities for operators of Hardy type, Studia Math. 110 (1994), 35-52. - S. Bloom and R. Kerman, Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator, ibid., 149-167.
- R. Coifman et G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971.
- C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115.
- M. A. Krasnosel'skiĭ and Ya. B. Rutickiĭ, Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.
- Q. Lai, Weighted weak type inequalities for fractional maximal operator on spaces of homogeneous type, Acta Math. Sinica 32 (1989), 448-456.
- Q. Lai, Two weight mixed Φ-inequalities for the Hardy operator and the Hardy-Littlewood maximal operator, J. London Math. Soc. (2) 48 (1992), 301-318.
- Q. Lai, Two weight Φ-inequalities for the Hardy operator, Hardy-Littlewood maximal operator and fractional integrals, Proc. Amer. Math. Soc. 118 (1993), 129-142.
- Q. Lai, Weighted integral inequalities for the Hardy type operator and the fractional maximal operator, J. London Math. Soc. (2) 49 (1994), 244-266.
- Q. Lai, A note on the weighted norm inequality for the one-sided maximal operator, Proc. Amer. Math. Soc., to appear.
- Q. Lai, Weighted
-estimates for the one-sided maximal operator, preprint. - Q. Lai, A note on maximal inequalities, preprint.
- F. J. Martín-Reyes, New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions, preprint.
- F. J. Martín-Reyes, P. Ortega Salvador and A. de la Torre, Weighted inequalities for one-sided maximal functions, Trans. Amer. Math. Soc. 319 (1990), 517-534.
- P. Ortega Salvador, Weighted inequalities for one-sided maximal function in Orlicz classes, preprint.
- P. Ortega Salvador and L. Pick, Two weight weak and extra-weak type inequalities for the one-sided maximal operator, preprint.
- L. Pick, Two-weight weak type maximal inequalities in Orlicz classes, Studia Math. 100 (1991), 207-218.
- E. Sawyer, A characterization of a two-weight norm inequality for maximal operator, ibid. 75 (1982), 1-11.
- E. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Trans. Amer. Math. Soc. 297 (1986), 53-61.
- T. Shimogaki, Hardy-Littlewood majorants in function spaces, J. Math. Soc. Japan 17 (1965), 365-373.