ArticleOriginal scientific text
Title
Pointwise ergodic theorems in Lorentz spaces L(p,q) for null preserving transformations
Authors 1
Affiliations
- Department of Mathematics, Okayama University, Okayama, 700 Japan
Abstract
Let (X,ℱ,µ) be a finite measure space and τ a null preserving transformation on (X,ℱ,µ). Functions in Lorentz spaces L(p,q) associated with the measure μ are considered for pointwise ergodic theorems. Necessary and sufficient conditions are given in order that for any f in L(p,q) the ergodic average converges almost everywhere to a function f* in , where (pq) and are assumed to be in the set . Results due to C. Ryll-Nardzewski, S. Gładysz, and I. Assani and J. Woś are generalized and unified
Bibliography
- I. Assani, Quelques résultats sur les opérateurs positifs à moyennes bornées dans
, Ann. Sci. Univ. Clermont-Ferrand II Probab. Appl. 3 (1985), 65-72. - I. Assani and J. Woś, An equivalent measure for some nonsingular transformations and application, Studia Math. 97 (1990), 1-12.
- N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Interscience, New York, 1958.
- S. Gładysz, Ergodische Funktionale und individueller ergodischer Satz, Studia Math. 19 (1960), 177-185.
- R. A. Hunt, On L(p,q) spaces, Enseign. Math. 12 (1966), 177-185.
- Y. Ito, Uniform integrability and the pointwise ergodic theorem, Proc. Amer. Math. Soc. 16 (1965), 222-227.
- U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin, 1985.
- P. Ortega Salvador, Weights for the ergodic maximal operator and a.e. convergence of the ergodic averages for functions in Lorentz spaces, Tôhoku Math. J. 45 (1993), 437-446.
- H. L. Royden, Real Analysis, Macmillan, New York, 1988.
- C. Ryll-Nardzewski, On the ergodic theorems. I. (Generalized ergodic theorems), Studia Math. 12 (1951), 65-73.
- R. Sato, Pointwise ergodic theorems for functions in Lorentz spaces
with p≠ ∞, Studia Math. 109 (1994), 209-216.