ArticleOriginal scientific text

Title

Pointwise ergodic theorems in Lorentz spaces L(p,q) for null preserving transformations

Authors 1

Affiliations

  1. Department of Mathematics, Okayama University, Okayama, 700 Japan

Abstract

Let (X,ℱ,µ) be a finite measure space and τ a null preserving transformation on (X,ℱ,µ). Functions in Lorentz spaces L(p,q) associated with the measure μ are considered for pointwise ergodic theorems. Necessary and sufficient conditions are given in order that for any f in L(p,q) the ergodic average n-1n-1_{i=0}fτi(x) converges almost everywhere to a function f* in L(p1,q1], where (pq) and (p1,q1] are assumed to be in the set {(r,s):r=s=1,or1<r<and1s,orr=s=}. Results due to C. Ryll-Nardzewski, S. Gładysz, and I. Assani and J. Woś are generalized and unified

Bibliography

  1. I. Assani, Quelques résultats sur les opérateurs positifs à moyennes bornées dans Lp, Ann. Sci. Univ. Clermont-Ferrand II Probab. Appl. 3 (1985), 65-72.
  2. I. Assani and J. Woś, An equivalent measure for some nonsingular transformations and application, Studia Math. 97 (1990), 1-12.
  3. N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Interscience, New York, 1958.
  4. S. Gładysz, Ergodische Funktionale und individueller ergodischer Satz, Studia Math. 19 (1960), 177-185.
  5. R. A. Hunt, On L(p,q) spaces, Enseign. Math. 12 (1966), 177-185.
  6. Y. Ito, Uniform integrability and the pointwise ergodic theorem, Proc. Amer. Math. Soc. 16 (1965), 222-227.
  7. U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin, 1985.
  8. P. Ortega Salvador, Weights for the ergodic maximal operator and a.e. convergence of the ergodic averages for functions in Lorentz spaces, Tôhoku Math. J. 45 (1993), 437-446.
  9. H. L. Royden, Real Analysis, Macmillan, New York, 1988.
  10. C. Ryll-Nardzewski, On the ergodic theorems. I. (Generalized ergodic theorems), Studia Math. 12 (1951), 65-73.
  11. R. Sato, Pointwise ergodic theorems for functions in Lorentz spaces Lpq with p≠ ∞, Studia Math. 109 (1994), 209-216.
Pages:
227-236
Main language of publication
English
Received
1993-04-19
Accepted
1993-12-10
Published
1995
Exact and natural sciences