ArticleOriginal scientific text

Title

The Cauchy problem and self-similar solutions for a nonlinear parabolic equation

Authors 1

Affiliations

  1. Mathematical Institute, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Abstract

The existence of solutions to the Cauchy problem for a nonlinear parabolic equation describing the gravitational interaction of particles is studied under minimal regularity assumptions on the initial conditions. Self-similar solutions are constructed for some homogeneous initial data.

Keywords

nonlinear parabolic-elliptic system, Cauchy problem, self-similar solutions

Bibliography

  1. P. Baras et M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures, Appl. Anal. 18 (1984), 111-149.
  2. P. Baras et M. Pierre, Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 185-212.
  3. M.-F. Bidaut-Véron and L. Véron, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math. 106 (1991), 489-539 (erratum: ibid. 112 (1993), 447).
  4. P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles, III, Colloq. Math. 68 (1995), 229-239.
  5. P. Biler, D. Hilhorst and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, II, ibid. 67 (1994), 297-308.
  6. P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I, ibid. 66 (1994), 319-334.
  7. G. Bourdaud, Réalisations des espaces de Besov homogènes, Ark. Mat. 26 (1988), 41-54.
  8. M. Cannone, Ondelettes, paraproduits et Navier-Stokes, thèse de doctorat de l'Université Paris-IX, juin 1994.
  9. M. Cannone et Y. Meyer, Existence et unicité globale pour les équations de Navier-Stokes dans 3, prépublication, CEREMADE, Université Paris-Dauphine, 1994.
  10. M. Cannone, Y. Meyer et F. Planchon, Solutions auto-similaires des équations de Navier-Stokes, exposé VIII, Séminaire "Équations aux dérivées partielles", Centre de Mathématiques, École Polytechnique, 18 janvier 1994.
  11. M. Cannone, Y. Meyer et F. Planchon, Solutions auto-similaires de l'équation de Navier-Stokes, prépublication, CEREMADE, Université Paris-Dauphine, 1994.
  12. P. Federbush, Navier and Stokes meet the wavelet, Comm. Math. Phys. 155 (1993), 219-248.
  13. M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conf. Ser. in Math. 79, Amer. Math. Soc., Providence, R.I., 1991.
  14. Y. Giga and T. Miyakawa, Navier-Stokes flow in 3 with measures as initial vorticity and Morrey spaces, Comm. Partial Differential Equations 14 (1989), 577-618.
  15. J. Ginibre and G. Velo, Scattering in the energy space for a class of nonlinear wave equations, Comm. Math. Phys. 123 (1989), 535-573.
  16. T. Kato, Strong Lp solutions of the Navier-Stokes equations in m, with applications to weak solutions, Math. Z. 187 (1984), 471-480.
  17. T. Kato, Strong solutions of the Navier-Stokes equation in Morrey spaces, Bol. Soc. Brasil. Mat. (N.S.) 22 (1992), 127-155.
  18. T. Kobayashi and T. Muramatu, Abstract Besov spaces approach to the non-stationary Navier-Stokes equations, Math. Methods Appl. Sci. 15 (1992), 599-620.
  19. H. Kozono and M. Yamazaki, Semilinear heat equation and the Navier-Stokes equation with distributions as initial data, C. R. Acad. Sci. Paris 317 (1993), 1127-1132.
  20. P.-G. Lemarié, Continuité sur les espaces de Besov des opérateurs définis par des intégrales singulières, Ann. Inst. Fourier (Grenoble) 35 (4) (1985), 175-187.
  21. T. Miyakawa, On Morrey spaces of measures: basic properties and potential estimates, Hiroshima Math. J. 20 (1990), 213-222.
  22. M. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations 17 (1992), 1407-1456.
  23. H. Triebel, Theory of Function Spaces, Monographs Math. 78, Birkhäuser, 1983.
  24. H. Triebel, Theory of Function Spaces II, Monographs Math. 84, Birkhäuser, 1992.
  25. F. B. Weissler, Local existence and nonexistence for semilinear parabolic equations in Lp, Indiana Univ. Math. J. 29 (1980), 79-102.
Pages:
181-205
Main language of publication
English
Received
1994-07-25
Accepted
1995-01-27
Published
1995
Exact and natural sciences