ArticleOriginal scientific text

Title

On algebraic solutions of algebraic Pfaff equations

Authors 1

Affiliations

  1. Institute of Mathematics, University of Warsaw, Banacha 2 02-097 Warszawa, Poland

Abstract

We give a new proof of Jouanolou's theorem about non-existence of algebraic solutions to the system =zs,=xs,ż=ys. We also present some generalizations of the results of Darboux and Jouanolou about algebraic Pfaff forms with algebraic solutions.

Bibliography

  1. A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maier, Qualitative Theory of Dynamical Systems of Second Order, Moscow, Nauka, 1966 (in Russian).
  2. M. Carnicer, The Poincaré problem in the dicritical case, Ann. of Math. 140 (1994), 289-294.
  3. D. Cerveau and A. Lins-Neto, Holomorphic foliations in CP(2) having an invariant algebraic curve, Ann. Inst. Fourier (Grenoble) 41 (4) (1991), 883-903.
  4. G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré, Bull. Sci. Math. (Mélanges) 1878, 60-96; 123-144; 151-200.
  5. J. P. Jouanolou, Equations de Pfaff algébriques, Lecture Notes in Math. 708, Springer, 1979.
  6. A. Lins-Neto, Algebraic solutions of polynomial differential equations and foliations in dimension two, in: Holomorphic Dynamics, Lecture Notes in Math. 1345, Springer, 1988, 193-232
  7. J. Moulin-Ollagnier, A. Nowicki and J.-M. Strelcyn, On non-existence of constants of derivations; the proof of Jouanolou theorem and its development, preprint, 1992.
  8. H. Żołądek, The solution of the center-focus problem, preprint, 1992.
Pages:
117-126
Main language of publication
English
Received
1994-05-12
Published
1995
Exact and natural sciences