ArticleOriginal scientific text
Title
Boundedness of certain oscillatory singular integrals
Authors 1, 2
Affiliations
- epartment of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WIsconsin 53201, U.S.A.
- Department of Mathematical and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, U.S.A.
Abstract
We prove the and boundedness of oscillatory singular integral operators defined by Tf = p.v.Ω∗f, where , K(x) is a Calderón-Zygmund kernel, and Φ satisfies certain growth conditions.
Bibliography
- S. Chanillo, Weighted norm inequalities for strongly singular convolution operators, Trans. Amer. Math. Soc. 281 (1984), 77-107.
- S. Chanillo and M. Christ, Weak (1,1) bounds for oscillatory singular integrals, Duke Math. J. 55 (1987), 141-155.
- S. Chanillo, D. Kurtz and G. Sampson, Weighted weak (1,1) and weighted
estimates for oscillating kernels, Trans. Amer. Math. Soc. 295 (1986), 127-145. - R. Coifman, A real variable characterization of
, Studia Math. 51 (1974), 269-274. - R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
- D. Fan, An oscillating integral in the Besov space
, submitted for publication. - C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36.
- C. Fefferman and E. M. Stein,
spaces of several variables, ibid. 129 (1972), 137-193. - Y. Hu and Y. Pan, Boundedness of oscillatory singular integrals on Hardy spaces, Ark. Mat. 30 (1992), 311-320.
- W. B. Jurkat and G. Sampson, The complete solution to the
mapping problem for a class of oscillating kernels, Indiana Univ. Math. J. 30 (1981), 403-413. - Y. Pan, Uniform estimates for oscillatory integral operators, J. Funct. Anal. 100 (1991), 207-220.
- Y. Pan, Hardy spaces and oscillatory singular integrals, Rev. Mat. Iberoamericana 7 (1991), 55-64.
- Y. Pan, Boundedness of oscillatory singular integrals on Hardy spaces: II, Indiana Univ. Math. J. 41 (1992), 279-293.
- D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals and Radon transforms I, Acta Math. 157 (1986), 99-157.
- F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals I, J. Funct. Anal. 73 (1987), 179-194.
- G. Sampson, Oscillating kernels that map
into , Ark. Mat. 18 (1981), 125-144. - P. Sjölin, Convolution with oscillating kernels on
spaces, J. London Math. Soc. 23 (1981), 442-454. - P. Sjölin, Convolution with oscillating kernels, Indiana Univ. Math. J. 30 (1981), 47-55.
- M. Spivak, Calculus on Manifolds, Addison-Wesley, New York, N.Y., 1992.
- E. M. Stein, Oscillatory integrals in Fourier analysis, in: Beijing Lectures in Harmonic Analysis, Princeton Univ. Press, Princeton, N.J., 1986, pp. 307-355.
- E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, N.J., 1993.
- E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971.