ArticleOriginal scientific text

Title

Property (wM*) and the unconditional metric compact approximation property

Authors 1

Affiliations

  1. Department of Mathematics, Agder College 65, Tordenskjoldsgate, N-4604 Kristiansand, Norway

Abstract

The main objective of this paper is to give a simple proof for a larger class of spaces of the following theorem of Kalton and Werner. (a) X has property (M*), and (b) X has the metric compact approximation property Our main tool is a new property (wM*) which we show to be closely related to the unconditional metric approximation property.

Bibliography

  1. E. Alfsen and E. Effros, Structure in real Banach spaces, Parts I and II, Ann. of Math. 96 (1972), 98-173.
  2. F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, Cambridge University Press, 1973.
  3. P. G. Casazza and N. J. Kalton, Notes on approximation properties in separable Banach spaces, in: P. F. X. Müller and W. Schachermayer (eds.), Geometry of Banach Spaces, Proc. Conf. Strobl 1989, London Math. Soc. Lecture Note Ser. 158, Cambridge University Press, 1990, 49-63.
  4. H. S. Collins and W. Ruess, Weak compactness in spaces of compact operators and of vector-valued functions, Pacific J. Math. 106 (1983), 45-71.
  5. J. Diestel, Sequences and Series in Banach Spaces, Springer, 1984.
  6. J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc. Providence, R.I., 1977.
  7. M. Feder and P. Saphar, Spaces of compact operators and their dual spaces, Israel J. Math. 21 (1975), 38-49.
  8. G. Godefroy, N. J. Kalton and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13-59.
  9. A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
  10. P. Harmand and Å. Lima, Banach spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc. 283 (1983), 253-264.
  11. P. Harmand, D. Werner and W. Werner, M-ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, Berlin, 1993.
  12. K. John, On a result of J. Johnson, preprint, 1993.
  13. J. Johnson, Remarks on Banach spaces of compact operators, J. Funct. Anal. 32 (1979), 304-311.
  14. N. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278.
  15. N. Kalton, M-ideals of compact operators, Illinois J. Math. 37 (1993), 147-169.
  16. N. Kalton and D. Werner, Property (M), M-ideals, and almost isometric structure of Banach spaces, preprint, 1993.
  17. Å. Lima, Intersection properties of balls and subspaces in Banach spaces, Trans. Amer. Math. Soc. 227 (1977), 1-62.
  18. Å. Lima, On M-ideals and best approximation, Indiana Univ. Math. J. 31 (1982), 27-36.
  19. Å. Lima, The metric approximation property, norm-one projections and intersection properties of balls, Israel J. Math. 84 (1993), 451-475.
  20. Å. Lima, E. Oja, T. S. S. R. K. Rao and D. Werner, Geometry of operator spaces, Michigan Math. J., to appear.
  21. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Ergeb. Math. Grenzgeb. 92, Springer, Berlin, 1977.
  22. E. Oja, A note on M-ideals of compact operators, Acta et Comment. Univ. Tartuensis 960 (1993), 75/92.
  23. R. Phelps, Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Math. 1364, Springer, 1989.
  24. D. Werner, Denting points in tensor products of Banach spaces, Proc. Amer. Math. Soc. 101 (1987), 122-126.
Pages:
249-263
Main language of publication
English
Received
1994-05-30
Accepted
1994-09-21
Published
1995
Exact and natural sciences