ArticleOriginal scientific text

Title

Singularities and normal forms of generic 2-distributions on 3-manifolds

Authors 1, 2

Affiliations

  1. Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warszawa, Poland
  2. Department of Mathematics, Technion, 32000 Haifa, Israel

Abstract

We give a complete classification of germs of generic 2-distributions on 3-manifolds. By a 2-distribution we mean either a module generated by two vector fields (at singular points its dimension decreases) or a Pfaff equation, i.e. a module generated by a differential 1-form (at singular points the dimension of its kernel increases).

Bibliography

  1. [A] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York, 1978.
  2. [AI] V. I. Arnold and Yu. S. Il'yashenko, Ordinary Differential Equations, in: Modern Problems in Mathematics, Dynamical Systems 1, Springer, Berlin 1985.
  3. [AVG] V. I. Arnold, A. N. Varchenko and S. M. Gusein-Zade, Singularities of Differentiable Maps, Vol. 1, Nauka, Moscow, 1982 (in Russian); English transl.: Birkhäuser, 1985.
  4. [B] G. R. Belitskiĭ, Smooth equivalence of germs of vector fields with one zero eigenvalue or a pair of purely imaginary eigenvalues, Funktsional. Anal. i Prilozhen. 20 (4) (1986), 1-8 (in Russian).
  5. [GG] M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Springer, Berlin, 1973.
  6. [GT] M. Golubitsky and D. Tischler, On the local stability of differential forms, Trans. Amer. Math. Soc. 223 (1976), 205-221.
  7. [JP] B. Jakubczyk and F. Przytycki, Singularities of k-tuples of vector fields, Dissertationes Math. 213 (1984).
  8. [L] V. V. Lychagin, Local classification of first order nonlinear partial differential equations, Uspekhi Mat. Nauk 30 (1) (1975), 101-171 (in Russian).
  9. [M] J. Martinet, Sur les singularités des formes différentielles, Ann. Inst. Fourier (Grenoble) 20 (1) (1970), 95-178.
  10. [MZ] P. Mormul and M. Zhitomirskiĭ, Modules of vector fields, differential forms and degenerations of differential systems, Trans. Amer. Math. Soc., to appear.
  11. [P] F. Pelletier, Singularités d'ordre supérieur de 1-formes, 2-formes et équations de Pfaff, Publ. Math. IHES 61 (1985).
  12. [R] R. Roussarie, Modules locaux de champs et de formes, Astérisque 30 (1975).
  13. [Z1] M. Zhitomirskiĭ, Singularities and normal forms of odd-dimensional Pfaff equations, Funktsional. Anal. i Prilozhen. 23 (1) (1989), 70-71 (in Russian).
  14. [Z2] M. Zhitomirskiĭ, Typical Singularities of Differential 1-forms and Pfaffian Equations, Transl. Math. Monographs 113, Amer. Math. Soc., Providence, 1992.
  15. [Z3] M. Zhitomirskiĭ, Finitely determined 1-forms ω, ω00, are exhausted by Darboux and Martinet models, Funktsional. Anal. i Prilozhen. 19 (1) (1985), 59-61 (in Russian).
Pages:
223-248
Main language of publication
English
Received
1993-12-17
Accepted
1994-09-27
Published
1995
Exact and natural sciences