ArticleOriginal scientific text
Title
On local automorphisms and mappings that preserve idempotents
Authors 1, 2, 1, 2
Affiliations
- Department of Mathematics, University of Maribor, PF, Koroška 160, 62000 Maribor, Slovenia
- University of Maribor, TF, Smetanova 17, 62000 Maribor, Slovenia
Abstract
Let B(H) be the algebra of all bounded linear operators on a Hilbert space H. Automorphisms and antiautomorphisms are the only bijective linear mappings θ of B(H) with the property that θ(P) is an idempotent whenever P ∈ B(H) is. In case H is separable and infinite-dimensional, every local automorphism of B(H) is an automorphism.
Bibliography
- L. B. Beasley and N. J. Pullman, Linear operators preserving idempotent matrices over fields, Linear Algebra Appl. 146 (1991), 7-20.
- M. Brešar, Characterizations of derivations on some normed algebras with involution, J. Algebra 152 (1992), 454-462.
- M. Brešar and P. Šemrl, Mappings which preserve idempotents, local automorphisms, and local derivations, Canad. J. Math. 45 (1993), 483-496.
- G. H. Chan, M. H. Lim and K. K. Tan, Linear preservers on matrices, Linear Algebra Appl. 93 (1987), 67-80.
- P. R. Chernoff, Representations, automorphisms and derivations of some operator algebras, J. Funct. Anal. 12 (1973), 275-289.
- M. Eidelheit, On isomorphisms of rings of linear operators, Studia Math. 9 (1940), 97-105.
- I. N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, Chicago, 1969.
- N. Jacobson and C. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479-502.
- A. A. Jafarian and A. R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66 (1986), 255-261.
- R. V. Kadison, Local derivations, J. Algebra 130 (1990), 494-509.
- D. R. Larson and A. R. Sourour, Local derivations and local automorphisms of B(X), in: Proc. Sympos. Pure Math. 51, Part 2, Providence, R.I., 1990, 187-194.
- C. Pearcy and D. Topping, Sums of small numbers of idempotents, Michigan Math. J. 14 (1967), 453-465.