ArticleOriginal scientific text

Title

On local automorphisms and mappings that preserve idempotents

Authors 1, 2, 1, 2

Affiliations

  1. Department of Mathematics, University of Maribor, PF, Koroška 160, 62000 Maribor, Slovenia
  2. University of Maribor, TF, Smetanova 17, 62000 Maribor, Slovenia

Abstract

Let B(H) be the algebra of all bounded linear operators on a Hilbert space H. Automorphisms and antiautomorphisms are the only bijective linear mappings θ of B(H) with the property that θ(P) is an idempotent whenever P ∈ B(H) is. In case H is separable and infinite-dimensional, every local automorphism of B(H) is an automorphism.

Bibliography

  1. L. B. Beasley and N. J. Pullman, Linear operators preserving idempotent matrices over fields, Linear Algebra Appl. 146 (1991), 7-20.
  2. M. Brešar, Characterizations of derivations on some normed algebras with involution, J. Algebra 152 (1992), 454-462.
  3. M. Brešar and P. Šemrl, Mappings which preserve idempotents, local automorphisms, and local derivations, Canad. J. Math. 45 (1993), 483-496.
  4. G. H. Chan, M. H. Lim and K. K. Tan, Linear preservers on matrices, Linear Algebra Appl. 93 (1987), 67-80.
  5. P. R. Chernoff, Representations, automorphisms and derivations of some operator algebras, J. Funct. Anal. 12 (1973), 275-289.
  6. M. Eidelheit, On isomorphisms of rings of linear operators, Studia Math. 9 (1940), 97-105.
  7. I. N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, Chicago, 1969.
  8. N. Jacobson and C. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479-502.
  9. A. A. Jafarian and A. R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66 (1986), 255-261.
  10. R. V. Kadison, Local derivations, J. Algebra 130 (1990), 494-509.
  11. D. R. Larson and A. R. Sourour, Local derivations and local automorphisms of B(X), in: Proc. Sympos. Pure Math. 51, Part 2, Providence, R.I., 1990, 187-194.
  12. C. Pearcy and D. Topping, Sums of small numbers of idempotents, Michigan Math. J. 14 (1967), 453-465.
Pages:
101-108
Main language of publication
English
Received
1993-06-09
Accepted
1994-09-12
Published
1995
Exact and natural sciences