ArticleOriginal scientific text
Title
On automatic boundedness of Nemytskiĭ set-valued operators
Authors 1, 2
Affiliations
- Institute of Mathematics, Polish Academy of Sciences, P.O. BOX 137, 00-950 Warszawa, Poland
- Department of Mathematics, Harbin Normal University, Harbin, P.R. China
Abstract
Let X, Y be two separable F-spaces. Let (Ω,Σ,μ) be a measure space with μ complete, non-atomic and σ-finite. Let be the Nemytskiĭ set-valued operator induced by a sup-measurable set-valued function . It is shown that if maps a modular space into subsets of a modular space , then is automatically modular bounded, i.e. for each set K ⊂ N(L(Ω,Σ,μ;X)) such that we have .
Keywords
Nemytskiĭ set-valued operators, superposition measurable set-valued operators, automatic boundedness, modular spaces
Bibliography
- J. Appell, Nguyen Hong Tai and P. P. Zabrejko [P. P. Zabreǐko], Multivalued superposition operators in ideal spaces of vector functions. I, II, Indag. Math. (N.S.) 2 (1991), 385-395, 397-409.
- J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
- M. C. Joshi and R. K. Bose, Some Topics in Nonlinear Functional Analysis, Halsted Press, New York, 1985.
- J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, 1983.
- J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49-65.
- J. Musielak and W. Orlicz, Some remarks on modular spaces, Bull. Acad. Polon. Sci. 7 (1959), 661-668.
- H. Nakano, Modulared linear spaces, J. Fac. Sci. Univ. Tokyo Sect. I 6 (1950), 85-131.
- H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen, Tokyo, 1950.
- H. Nakano, Topology and Linear Topological Spaces, Maruzen, Tokyo, 1951.
- V. Niemytzki [V. Nemytskiĭ], Sur les équations intégrales non linéaires, C. R. Acad. Sci. Paris 196 (1933), 836-838.
- V. Niemytzki [V. Nemytskiĭ], Théorèmes d'existence et d'unicité des solutions de quelques équations intégrales non-linéaires, Mat. Sb. 41 (1934), 421-438.
- T. Pruszko, Topological degree methods in multi-valued boundary value problems, Nonlinear Anal. 5 (1981), 959-973.
- S. Rolewicz, Metric Linear Spaces, Reidel and PWN, 1985.
- W. Song, Multivalued superposition operators in
, preprint.