ArticleOriginal scientific text

Title

On automatic boundedness of Nemytskiĭ set-valued operators

Authors 1, 2

Affiliations

  1. Institute of Mathematics, Polish Academy of Sciences, P.O. BOX 137, 00-950 Warszawa, Poland
  2. Department of Mathematics, Harbin Normal University, Harbin, P.R. China

Abstract

Let X, Y be two separable F-spaces. Let (Ω,Σ,μ) be a measure space with μ complete, non-atomic and σ-finite. Let NF be the Nemytskiĭ set-valued operator induced by a sup-measurable set-valued function F:Ω×X2Y. It is shown that if NF maps a modular space (N(L(Ω,Σ,μ;X)),ϱN,μ) into subsets of a modular space (M(L(Ω,Σ,μ;Y)),ϱM,μ), then NF is automatically modular bounded, i.e. for each set K ⊂ N(L(Ω,Σ,μ;X)) such that rK={ϱN,μ(x):xK}< we have {ϱM,μ(y):yNF(K)}<.

Keywords

Nemytskiĭ set-valued operators, superposition measurable set-valued operators, automatic boundedness, modular spaces

Bibliography

  1. J. Appell, Nguyen Hong Tai and P. P. Zabrejko [P. P. Zabreǐko], Multivalued superposition operators in ideal spaces of vector functions. I, II, Indag. Math. (N.S.) 2 (1991), 385-395, 397-409.
  2. J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
  3. M. C. Joshi and R. K. Bose, Some Topics in Nonlinear Functional Analysis, Halsted Press, New York, 1985.
  4. J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, 1983.
  5. J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49-65.
  6. J. Musielak and W. Orlicz, Some remarks on modular spaces, Bull. Acad. Polon. Sci. 7 (1959), 661-668.
  7. H. Nakano, Modulared linear spaces, J. Fac. Sci. Univ. Tokyo Sect. I 6 (1950), 85-131.
  8. H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen, Tokyo, 1950.
  9. H. Nakano, Topology and Linear Topological Spaces, Maruzen, Tokyo, 1951.
  10. V. Niemytzki [V. Nemytskiĭ], Sur les équations intégrales non linéaires, C. R. Acad. Sci. Paris 196 (1933), 836-838.
  11. V. Niemytzki [V. Nemytskiĭ], Théorèmes d'existence et d'unicité des solutions de quelques équations intégrales non-linéaires, Mat. Sb. 41 (1934), 421-438.
  12. T. Pruszko, Topological degree methods in multi-valued boundary value problems, Nonlinear Anal. 5 (1981), 959-973.
  13. S. Rolewicz, Metric Linear Spaces, Reidel and PWN, 1985.
  14. W. Song, Multivalued superposition operators in Lp(Ω,X), preprint.
Pages:
65-72
Main language of publication
English
Received
1993-10-15
Accepted
1994-03-14
Published
1995
Exact and natural sciences