ArticleOriginal scientific text

Title

Banach spaces which admit a norm with the uniform Kadec-Klee property

Authors 1, 1, 2

Affiliations

  1. Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208, U.S.A.
  2. Institute of Mathematics, Bulgarian Academy of Sciences, 1090 Sofia, Bulgaria.

Abstract

Several results are established about Banach spaces Ӿ which can be renormed to have the uniform Kadec-Klee property. It is proved that all such spaces have the complete continuity property. We show that the renorming property can be lifted from Ӿ to the Lebesgue-Bochner space L2(Ӿ) if and only if Ӿ is super-reflexive. A basis characterization of the renorming property for dual Banach spaces is given.

Bibliography

  1. M. Besbes, S. J. Dilworth, P. N. Dowling and C. J. Lennard, New convexity and fixed point properties in Hardy and Lebesgue-Bochner spaces, J. Funct. Anal. 119 (1994), 340-357.
  2. J. Bourgain, La propriété de Radon-Nikodým, Publ. Math. Univ. Pierre et Marie Curie 36 (1979).
  3. J. Bourgain, D. H. Fremlin and M. Talagrand, Pointwise compact sets of Baire-measurable functions, Amer. J. Math. 100 (1979), 845-886.
  4. J. Bourgain and H. P. Rosenthal, Martingales valued in certain subsets of L1, Israel J. Math. 37 (1980), 54-75.
  5. N. L. Carothers, S. J. Dilworth, C. J. Lennard and D. A. Trautman, A fixed point property for the Lorentz space Lp,1(μ), Indiana Univ. Math. J. 40 (1991), 345-352.
  6. J. Castillo and F. Sanchez, Weakly p-compact, p-Banach-Saks and super-reflexive Banach spaces, J. Math. Anal. Appl., to appear.
  7. J. Diestel, Sequences and Series in Banach Spaces, Springer, New York, 1983.
  8. J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc., 1977.
  9. S. J. Dilworth and Y.-P. Hsu, The uniform Kadec-Klee property for the Lorentz spaces Lw,1, J. Austral. Math. Soc., to appear.
  10. W. T. Gowers, A space not containing c0, 1, or a reflexive subspace, preprint, 1992.
  11. M. Girardi and W. B. Johnson, The complete continuity property and finite-dimensional decompositions, Canad. Math. Bull., to appear.
  12. V. I. Gurariĭ and N. I. Gurariĭ, On bases in uniformly convex and uniformly smooth Banach spaces, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 210-215 (in Russian).
  13. Y.-P. Hsu, The lifting of the UKK property from E to CE, Proc. Amer. Math. Soc., to appear.
  14. Z. Hu and B.-L. Lin, RNP and CPCP in Lebesgue-Bochner function spaces, Illinois J. Math. 37 (1993), 329-347.
  15. R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 743-749.
  16. R. C. James, Some self-dual properties of normed linear spaces, in: Symposium on Infinite Dimensional Topology, Ann. of Math. Stud. 69, Princeton Univ. Press, 1972, 159-175.
  17. R. C. James, A non-reflexive Banach space that is uniformly non-octahedral, Israel J. Math. 18 (1974), 145-155.
  18. R. C. James, Non-reflexive spaces of type 2, ibid. 30 (1978), 1-13.
  19. R. C. James, KMP, RNP and PCP for Banach spaces, in: Contemp. Math. 85, Amer. Math. Soc., 1989, 281-317.
  20. R. C. James, Unconditional bases and the Radon-Nikodým property, Studia Math. 95 (1990), 255-262.
  21. W. B. Johnson, H. P. Rosenthal and M. Zippin, On bases, finite-dimensional decompositions, and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488-506.
  22. D. Kutzarova and T. Zachariades, On orthogonal convexity and related properties, preprint, 1992.
  23. G. Lancien, Applications de la théorie de l'indice en géometrié des espaces de Banach, Ph.D. thesis, Univ. Paris VI, 1992.
  24. G. Lancien, On uniformly convex and uniformly Kadec-Klee renormings, preprint.
  25. C. J. Lennard, C1 is uniformly Kadec-Klee, Proc. Amer. Math. Soc. 109 (1990), 71-77.
  26. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces 1, Sequence Spaces, Springer, Berlin, 1977.
  27. E. W. Odell and H. P. Rosenthal, A double-dual characterization of Banach spaces containing 1, Israel J. Math. 22 (1978), 290-294.
  28. J. R. Partington, On nearly uniformly convex Banach spaces, Math. Proc. Cambridge Philos. Soc. 93 (1983), 127-129.
  29. A. Pełczyński, On the impossibility of embedding of the space L in certain Banach spaces, Colloq. Math. 8 (1961), 199-203.
  30. S. Prus, Finite-dimensional decompositions of Banach spaces with (p,q)-estimates, Dissertationes Math. 263 (1987).
  31. S. Prus, Nearly uniformly smooth Banach spaces, Boll. Un. Mat. Ital. 7 (1989), 507-521.
  32. H. P. Rosenthal, Weak* Polish Banach spaces, J. Funct. Anal. 76 (1988), 267-316.
  33. H. P. Rosenthal, On the structure of non-dentable closed bounded convex sets, Adv. in Math. 70 (1988), 1-58.
  34. B. Tsirelson, Not every Banach space contains an imbedding of p or c0, Functional Anal. Appl. 8 (1974), 138-141.
  35. A. Wessel, Some results on Dunford-Pettis operators, strong regularity and the Radon-Nikodým property, Séminaire d'Analyse Fonctionnelle, Paris VI-VII, 1985-86, Publ. Math. Univ. Paris VII.
Pages:
267-277
Main language of publication
English
Received
1993-10-21
Accepted
1994-05-12
Published
1995
Exact and natural sciences