ArticleOriginal scientific text

Title

Compactness and countable compactness in weak topologies

Authors 1

Affiliations

  1. Department of Mathematics, University of Iowa, Iowa City, Iowa 52242, U.S.A.

Abstract

A bounded closed convex set K in a Banach space X is said to have quasi-normal structure if each bounded closed convex subset H of K for which diam(H) > 0 contains a point u for which ∥u-x∥ < diam(H) for each x ∈ H. It is shown that if the convex sets on the unit sphere in X satisfy this condition (which is much weaker than the assumption that convex sets on the unit sphere are separable), then relative to various weak topologies, the unit ball in X is compact whenever it is countably compact.

Keywords

weak topologies, compactness, countable compactness, quasi-normal structure, convexity structures

Bibliography

  1. T. Büber and W. A. Kirk, Constructive aspects of fixed point theory for nonexpansive mappings, to appear.
  2. T. Büber and W. A. Kirk, Convexity structures and the existence of minimal sets, preprint.
  3. H. H. Corson and J. Lindenstrauss, On weakly compact subsets of Banach spaces, Proc. Amer. Math. Soc. 17 (1966), 407-412.
  4. M. M. Day, R. C. James and S. Swaminathan, Normed linear spaces that are uniformly convex in every direction, Canad. J. Math. 23 (1971), 1051-1059.
  5. R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monographs Surveys Pure Appl. Math. 63, Longman, Essex, 1993.
  6. D. van Dulst, Equivalent norms and the fixed point property for nonexpansive mappings, J. London Math. Soc. (2) 25 (1982), 139-144.
  7. G. Godefroy, Existence and uniqueness of isometric preduals: A survey, in: Banach Space Theory, B. L. Lin (ed.), Contemp. Math. 85, Amer. Math. Soc., Providence, R.I., 1989, 131-194.
  8. G. Godefroy and N. Kalton, The ball topology and its applications, ibid., 195-237.
  9. K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Univ. Press, Cambridge, 1990.
  10. J. L. Kelley, General Topology, van Nostrand, Princeton, 1955.
  11. M. A. Khamsi, Étude de la propriété du point fixe dans les espaces de Banach et les espaces métriques, thèse de doctorat de l'Université Paris VI, 1987.
  12. M. A. Khamsi, On metric spaces with uniform normal structure, Proc. Amer. Math. Soc. 106 (1989), 723-726.
  13. M. A. Khamsi and D. Misane, Compactness of convexity structures in metric spaces, to appear.
  14. W. A. Kirk, Nonexpansive mappings and normal structure in Banach spaces, in: Proc. Research Workshop on Banach Space Theory, B. L. Lin (ed.), Univ. of Iowa, 1981, 113-127.
  15. W. A. Kirk, Nonexpansive mappings in metric and Banach spaces, Rend. Sem. Mat. Fis. Milano 61 (1981), 133-144.
  16. J. P. Penot, Fixed point theorems without convexity, Bull. Soc. Math. France Mém. 60 (1979), 129-152.
  17. P. Soardi, Struttura quasi normale e teoremi di punto unito, Rend. Istit. Mat. Univ. Trieste 4 (1972), 105-114.
  18. S. Troyanski, On locally uniformly convex and differentiable norms in certain nonseparable Banach spaces, Studia Math. 37 (1971), 173-180.
  19. C. S. Wong, Close-to-normal structure and its applications, J. Funct. Anal. 16 (1974), 353-358.
  20. V. Zizler, On some rotundity and smoothness properties of Banach spaces, Dissertationes Math. (Rozprawy Mat.) 87 (1971).
Pages:
243-250
Main language of publication
English
Received
1993-09-15
Accepted
1994-03-02
Published
1995
Exact and natural sciences