ArticleOriginal scientific text

Title

Construction of standard exact sequences of power series spaces

Authors 1, 2

Affiliations

  1. Fachbereich Mathematik, Universität Dortmund, Vogelpothsweg 87, D-44221 Dortmund, Germany
  2. Fachbereich Mathematik, Bergische Universität—GH Wuppertal, Gauss-Str. 20, D-42097 Wuppertal, Germany

Abstract

The following result is proved: Let ΛRp(α) denote a power series space of infinite or of finite type, and equip ΛRp(α) with its canonical fundamental system of norms, R ∈ {0,∞}, 1 ≤ p < ∞. Then a tamely exact sequence (⁎) 0ΛRp(α)ΛRp(α)ΛRp(α)0 exists iff α is strongly stable, i.e. limnα2nαn=1, and a linear-tamely exact sequence (*) exists iff α is uniformly stable, i.e. there is A such that limnαKnαnA< for all K. This result extends a theorem of Vogt and Wagner which states that a topologically exact sequence (*) exists iff α is stable, i.e. nα2nαn<.

Bibliography

  1. R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65-222.
  2. H. Külkens, Gleichmäßig shiftstabile Potenzreihenräume, Diplomarbeit, Wuppertal, 1991.
  3. A. Pietsch, Nuclear Locally Convex Spaces, Ergeb. Math. Grenzgeb. 66, Springer, 1972.
  4. M. Poppenberg and D. Vogt, A tame splitting theorem for exact sequences of Fréchet spaces, Math. Z., to appear.
  5. M. Poppenberg and D. Vogt, Tame splitting theory for Fréchet-Hilbert spaces, in: Functional Analysis, K. D. Bierstedt, A. Pietsch, W. M. Ruess and D. Vogt (eds.), Lecture Notes in Pure and Appl. Math. 150, Marcel Dekker, New York, 1994, 475-492.
  6. D. Vogt, On the characterization of subspaces and quotient spaces of stable power series spaces of finite type, Arch. Math. (Basel) 50 (1988), 463-469.
  7. D. Vogt, Eine Charakterisierung der Potenzreihenräume von endlichem Typ und ihre Folgerungen, Manuscripta Math. 37 (1982), 269-301.
  8. D. Vogt, Charakterisierung der Unterräume eines nuklearen stabilen Potenzreihenraumes von endlichem Typ, Studia Math. 71 (1982), 251-270.
  9. D. Vogt, Tame spaces and power series spaces, Math. Z. 196 (1987), 523-536.
  10. D. Vogt, Power series space representations of nuclear Fréchet spaces, Trans. Amer. Math. Soc. 319 (1990), 191-208.
  11. D. Vogt and M. J. Wagner, Charakterisierung der Unterräume und Quotientenräume der nuklearen stabilen Potenzreihenräume von unendlichem Typ, Studia Math. 70 (1981), 63-80.
Pages:
229-241
Main language of publication
English
Received
1993-09-13
Accepted
1994-05-05
Published
1995
Exact and natural sciences