Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

1994-1995 | 112 | 3 | 213-228

Tytuł artykułu

A rigid space admitting compact operators

Autorzy

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
A rigid space is a topological vector space whose endomorphisms are all simply scalar multiples of the identity map. The first complete rigid space was published in 1981 in [2]. Clearly a rigid space is a trivial-dual space, and admits no compact endomorphisms. In this paper a modification of the original construction results in a rigid space which is, however, the domain space of a compact operator, answering a question that was first raised soon after the existence of complete rigid spaces was demonstrated.

Twórcy

autor
  • Department of Mathematics, Louisiana State University-Shreveport, Shreveport, Louisiana 71115 U.S.A.

Bibliografia

  • [1] N. J. Kalton, N. T. Peck and J. W. Roberts, An F-Space Sampler, Cambridge Univ. Press, Cambridge, 1984.
  • [2] N. J. Kalton and J. W. Roberts, A rigid subspace of $L_0$, Trans. Amer. Math. Soc. 266 (1981), 645-654.
  • [3] N. J. Kalton and J. H. Shapiro, An F-space with trivial dual and non-trivial compact endomorphisms, Israel J. Math. 20 (1975), 282-291.
  • [4] D. Pallaschke, The compact endomorphisms of the metric linear spaces $ℒ_φ$, Studia Math. 47 (1973), 123-133.
  • [5] P. D. Sisson, Compact operators on trivial-dual spaces, PhD thesis, Univ. of South Carolina, Columbia, South Carolina, 1993.
  • [6] P. Turpin, Opérateurs linéaires entre espaces d'Orlicz non localement convexes, Studia Math. 46 (1973), 153-165.
  • [7] L. Waelbroeck, A rigid topological vector space, ibid. 59 (1977), 227-234.

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-smv112i3p213bwm