ArticleOriginal scientific text
Title
Ambiguous loci of the farthest distance mapping from compact convex sets
Authors 1, 2
Affiliations
- Centro Matematico V. Volterra, Università di Roma II, Via della Ricerca Scientifica, 00133 Roma, Italy
- Dipartimento di Matematica, Università dell'Aquila, Via Vetoio, 67010 Coppito (L'Aquila), Italy
Abstract
Let be a strictly convex separable Banach space of dimension at least 2. Let K() be the space of all nonempty compact convex subsets of endowed with the Hausdorff distance. Denote by the set of all X ∈ K() such that the farthest distance mapping is multivalued on a dense subset of . It is proved that is a residual dense subset of K().
Bibliography
- E. Asplund, Farthest points in reflexive locally uniformly rotund Banach spaces, Israel J. Math. 4 (1966), 213-216.
- K. Bartke and H. Berens, Eine Beschreibung der Nichteindeutigkeitsmenge für die beste Approximation in der Euklidischen Ebene, J. Approx. Theory 47 (1986), 54-74.
- J. M. Borwein and S. Fitzpatrick, Existence of nearest points in Banach spaces, Canad. J. Math. 41 (1989), 702-720.
- F. S. De Blasi, J. Myjak and P. L. Papini, Porous sets in best approximation theory, J. London Math. Soc. (2) 44 (1991), 135-142.
- R. Deville and V. Zizler, Farthest points in w*-compact sets, Bull. Austral. Math. Soc. 38 (1988), 433-439.
- N. Dunford and J. T. Schwartz, Linear Operators, Vol. I, Interscience, New York, 1958.
- M. Edelstein, Farthest points of sets in uniformly convex Banach spaces, Israel J. Math. 4 (1966), 171-176.
- P. M. Gruber, Die meisten konvexen Körper sind glatt, aber nicht zu glatt, Math. Ann. 229 (1977), 259-266.
- K. S. Lau, Farthest points in weakly compact sets, Israel J. Math. 22 (1975), 168-174.
- V. Klee, Some new results on smoothness and rotundity in normed linear spaces, Math. Ann. 139 (1959), 51-63.
- S. Miyajima and F. Wada, Uniqueness of a farthest point in a bounded closed set in Banach spaces, preprint.
- B. B. Panda and K. Dwivedi, On existence of farthest points, Indian J. Pure Appl. Math. 16 (1985), 486-490.
- T. Zajíček, On the Fréchet differentiability of distance functions, Rend. Circ. Mat. Palermo (2) Suppl. 5 (1985), 161-165.
- T. Zamfirescu, Using Baire category in geometry, Rend. Sem. Mat. Univers. Politec. Torino 43 (1985), 67-88.
- T. Zamfirescu, The nearest point mapping is single valued nearly everywhere, Arch. Math. (Basel) 54 (1990), 563-566.