ArticleOriginal scientific text
Title
Derivability, variation and range of a vector measure
Authors 1
Affiliations
- Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, P.O. Box 1160, 41080 Sevilla, Spain
Abstract
We prove that the range of a vector measure determines the σ-finiteness of its variation and the derivability of the measure. Let F and G be two countably additive measures with values in a Banach space such that the closed convex hull of the range of F is a translate of the closed convex hull of the range of G; then F has a σ-finite variation if and only if G does, and F has a Bochner derivative with respect to its variation if and only if G does. This complements a result of [Ro] where we proved that the range of a measure determines its total variation. We also give a new proof of this fact.
Keywords
vector measures, range, variation, Bochner derivability, zonoid
Bibliography
- [A] A. D. Aleksandrov, Zur Theorie der gemischten Volumina von konvexen Körpern. II. Neue Ungleichungen zwischen den gemischten Volumina und ihre Anwendungen, Mat. Sb. (N.S.) 2 (1937), 1205-1238.
- [AD] R. Anantharaman and J. Diestel, Sequences in the range of a vector measure, Comment. Math. Prace Mat. 30 (1991), 221-235.
- [BDS] R. G. Bartle, N. Dunford and J. Schwartz, Weak compactness and vector measures, Canad. J. Math. 7 (1955), 289-305.
- [B] E. D. Bolker, A class of convex bodies, Trans. Amer. Math. Soc. 145 (1969), 323-346.
- [C] G. Choquet, Lectures on Analysis, Vol. III, W. A. Benjamin, Reading, Mass., 1969.
- [DFJP] W. J. Davis, T. Figiel, W. B. Johnson and A. Pełczyński, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327.
- [D] J. Diestel, The Radon-Nikodym property and the coincidence of integral and nuclear operators, Rev. Roumaine Math. Pures Appl. 17 (1972), 1611-1620.
- [DU] J. Diestel and J. J. Uhl Jr., Vector Measures, Amer. Math. Soc., Providence, R.I., 1977.
- [G] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
- [KK] I. Kluvánek and G. Knowles, Vector Measures and Control Systems, North-Holland, Amsterdam, 1975.
- [L] D. R. Lewis, On integrability and summability in vector spaces, Illinois J. Math. 16 (1972), 294-307.
- [M] G. Matheron, Un théorème d'unicité pour les hyperplans poissoniens, J. Appl. Probab. 11 (1974), 184-189.
- [N] A. Neyman, Decomposition of ranges of vector measures, Israel J. Math. 40 (1981), 54-64.
- [Pe] C. M. Petty, Centroid surfaces, Pacific J. Math. 11 (1961), 1535-1547.
- [P] G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conf. Ser. in Math. 60, Amer. Math. Soc., Providence, R.I., 1986.
- [R1] N. W. Rickert, Measures whose range is a ball, Pacific J. Math. 23 (1967), 361-371.
- [R2] N. W. Rickert, The range of a measure, Bull. Amer. Math. Soc. 73 (1967), 560-563.
- [Ri] M. A. Rieffel, The Radon-Nikodym theorem for the Bochner integral, Trans. Amer. Math. Soc. 131 (1968), 466-487.
- [Ro] L. Rodríguez-Piazza, The range of a vector measure determines its total variation, Proc. Amer. Math. Soc. 111 (1991), 205-214.
- [SW] R. Schneider and W. Weil, Zonoids and related topics, in: Convexity and its Applications, P. M. Gruber and J. M. Wills (eds.), Birkhäuser, Basel (1983), 296-317.
- [T] A. E. Tong, Nuclear mappings on C(X), Math. Ann. 194 (1971), 213-224.