ArticleOriginal scientific text

Title

Semisimplicity, joinings and group extensions

Authors 1, 2, 2

Affiliations

  1. Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 1A1
  2. Department of Mathematics and Informatics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

Abstract

We present a theory of self-joinings for semisimple maps and their group extensions which is a unification of the following three cases studied so far: (iii) Gaussian-Kronecker automorphisms: [Th], [Ju-Th]. (ii) MSJ and simple automorphisms: [Ru], [Ve], [Ju-Ru]. (iii) Group extension of discrete spectrum automorphisms: [Le-Me], [Le], [Me].

Bibliography

  1. [An] H. Anzai, Ergodic skew product transformations on the torus, Osaka J. Math. 3 (1951), 83-99.
  2. [Fi-Ru] A. Fieldsteel and D. Rudolph, An ergodic transformation with trivial Kakutani centralizer, Ergodic Theory Dynamical Systems 12 (1992), 459-478.
  3. [Fu] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, N.J., 1981.
  4. [Gl-Ho-Ru] E. Glasner, B. Host and D. Rudolph, Simple systems and their higher order self-joinings, Israel J. Math. 78 (1992), 131-142.
  5. [Ju-Ru] A. del Junco and D. Rudolph, On ergodic actions whose self-joinings are graphs, Ergodic Theory Dynamical Systems 7 (1987), 531-557.
  6. [Ju-Th] A. del Junco and J.-P. Thouvenot, The theory for Gaussian-Kronecker automorphisms, preprint.
  7. [Ke-Ne1] H. B. Keynes and D. Newton, Choquet Theory and Ergodic Measures for Compact Group Extensions, Lecture Notes in Math. 318, Springer, 1973.
  8. [Ke-Ne2] H. B. Keynes and D. Newton, The structure of ergodic measures for compact group extensions, Israel J. Math. 18 (1974), 363-389.
  9. [Ke-Ne3] H. B. Keynes and D. Newton, Ergodic measures for nonabelian compact group extensions, Compositio Math. 32 (1976), 53-70.
  10. [Le] M. Lemańczyk, Ergodic abelian group extensions of rotations, preprint, Toruń 1990.
  11. [Le] M. Lemańczyk and M. K. Mentzen, Compact subgroups in the centralizer of natural factors of an ergodic group extension of a rotation determine all factors, Ergodic Theory Dynamical Systems 10 (1990), 763-776.
  12. [Me] M. K. Mentzen, Ergodic properties of group extensions of dynamical systems with discrete spectra, Studia Math. 101 (1991), 19-31.
  13. [Ne] D. Newton, On canonical factors of ergodic dynamical systems, J. London Math. Soc. 19 (1979), 129-136.
  14. [Ne1] D. Newton, Coalescence and spectrum of automorphisms of a Lebesgue space, Z. Wahrsch. Verw. Gebiete 19 (1971), 117-122.
  15. [Ru] D. Rudolph, An example of measure preserving map with minimal self-joinings, and applications, J. Analyse Math. 35 (1979), 97-122.
  16. [Ru1] D. Rudolph, Classifying the isometric extensions of a Bernoulli shift, ibid. 34 (1978), 36-60.
  17. [Th] J.-P. Thouvenot, The metrical structure of some Gaussian processes, in: Proc. Ergodic Theory and Related Topics II, Georgenthal 1986, 195-198.
  18. [Ve] W. A. Veech, A criterion for a process to be prime, Monatsh. Math. 94 (1982), 335-341.
  19. [Zi] R. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), 373-409.
  20. [Zi1] R. Zimmer, Ergodic actions with generalized discrete spectrum, ibid., 555-588.
Pages:
141-164
Main language of publication
English
Received
1993-12-06
Accepted
1994-04-04
Published
1995
Exact and natural sciences