ArticleOriginal scientific text
Title
Ideal norms and trigonometric orthonormal systems
Authors 1
Affiliations
- Mathematical Institute, FSU Jena, 07740 Jena, Germany
Abstract
We characterize the UMD-property of a Banach space X by sequences of ideal norms associated with trigonometric orthonormal systems. The asymptotic behavior of those numerical parameters can be used to decide whether X is a UMD-space. Moreover, if this is not the case, we obtain a measure that shows how far X is from being a UMD-space. The main result is that all described sequences are not only simultaneously bounded but are also asymptotically equivalent.
Bibliography
- J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat. 22 (1983), 163-168.
- D. L. Burkholder, Martingales and Fourier analysis in Banach spaces, in: Probability and Analysis (Varenna, Italy, 1985), Lecture Notes in Math. 1206, Springer, 1986, 61-108.
- M. Defant, Zur vektorwertigen Hilberttransformation, Ph.D. thesis, Christian-Albrechts-Universität Kiel, 1986.
- N. Dinculeanu, Vector Measures, Deutscher Verlag der Wiss., Berlin, 1966.
- A. Pietsch, Operator Ideals, Deutscher Verlag der Wiss., Berlin, 1978.
- A. Pietsch, Eigenvalues and s-numbers, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1987.
- A. Pietsch and J. Wenzel, Orthogonal systems and geometry of Banach spaces, in preparation.
- A. Zygmund, Trigonometric Series, 2nd ed., Cambridge University Press, Cambridge, 1959.