ArticleOriginal scientific text
Title
Characterization of strict C*-algebras
Authors 1
Affiliations
- Department of Function Theory and Functional Analysis, Mechanics-Mathematics Faculty, Moscow State University, Lenin Hills, 117234 Moscow, Russia
Abstract
A Banach algebra A is called strict if the product morphism is continuous with respect to the weak norm in A ⊗ A. The following result is proved: A C*-algebra is strict if and only if all its irreducible representations are finite-dimensional and their dimensions are bounded.
Bibliography
- J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.
- A. Grothendieck, Produits tensorielles et espaces nucléaires, Mem. Amer. Math. Soc. 166 (1955).
- A. Ya. Helemskiĭ, Banach and Locally Convex Algebras, Clarendon Press, Oxford, 1993.
- R. V. Kadison, Irreducible operator algebras, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 273-276.
- E. Sh. Kurmakaeva, On the strictness of algebras and modules, preprint, Moscow University, No. 1548-B92, VINITI, 1992 (in Russian).
- N. Th. Varopoulos, Some remarks on Q-algebras, Ann. Inst. Fourier (Grenoble) 22 (4) (1972), 1-11.