ArticleOriginal scientific text

Title

From weak to strong types of LE1-convergence by the Bocce criterion

Authors 1, 2, 3

Affiliations

  1. Mathematical Institute, University of Utrecht, P.O. Box 80.010, 3508 Ta Utrecht, The Netherlands
  2. Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208, U.S.A.
  3. Département de Mathématiques, Université Montpellier II, 34095 Montpellier Cedex 05, France

Abstract

Necessary and sufficient oscillation conditions are given for a weakly convergent sequence (resp. relatively weakly compact set) in the Bochner-Lebesgue space E1 to be norm convergent (resp. relatively norm compact), thus extending the known results for 1. Similarly, necessary and sufficient oscillation conditions are given to pass from weak to limited (and also to Pettis-norm) convergence in E1. It is shown that tightness is a necessary and sufficient condition to pass from limited to strong convergence. Other implications between several modes of convergence in E1 are also studied.

Bibliography

  1. [ACV] A. Amrani, C. Castaing et M. Valadier, Méthodes de troncature appliquées à des problèmes de convergence faible ou forte dans L1, Arch. Rational Mech. Anal. 117 (1992), 167-191.
  2. [B1] E. J. Balder, On weak convergence implying strong convergence in L1-spaces, Bull. Austral. Math. Soc. 33 (1986), 363-368.
  3. [B2] E. J. Balder, On equivalence of strong and weak convergence in L1-spaces under extreme point conditions, Israel J. Math. 75 (1991), 1-23.
  4. [B3] E. J. Balder, From weak to strong L1-convergence by an oscillation restriction criterion of BMO type, preprint No. 666, Dept. of Math., University of Utrecht, 1991.
  5. [B4] E. J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory, SIAM J. Control Optim. 22 (1984), 570-598.
  6. [B5] E. J. Balder, On Prohorov's theorem for transition probabilities, Sém. Anal. Convexe 19 (1989), 9.1-9.11.
  7. [BH1] J. Batt and W. Hiermeyer, Weak compactness in the space of Bochner integrable functions, unpublished manuscript, 1980.
  8. [BH2] J. Batt and W. Hiermeyer, On compactness in Lp(μ,X) in the weak topology and in the topology σ(Lp(μ,X),Lq(μ,X)), Math. Z. 182 (1983), 409-423.
  9. [BS] J. Batt and G. Schlüchtermann, Eberlein compacts in L1(X), Studia Math. 83 (1986), 239-250.
  10. [BD] J. K. Brooks and N. Dinculeanu, Weak compactness in spaces of Bochner integrable functions, Adv. in Math. 24 (1977), 172-188.
  11. [C1] C. Castaing, Un résultat de compacité lié à la propriété des ensembles Dunford-Pettis dans L1_F(Ω,A,μ), Sém. Anal. Convexe 9 (1979), 17.1-17.7.
  12. [C2] C. Castaing, Sur la décomposition de Slaby. Applications aux problèmes de convergences en probabilités. Economie mathématique. Théorie du contrôle. Minimisation, Sém. Anal. Convexe 19 (1989), 3.1-3.35.
  13. [CV] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer, Berlin, 1977.
  14. [Da] B. Dawson, Convergence of conditional expectation operators and the compact range property, Ph.D. dissertation, University of North Texas, 1992.
  15. [D1] J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Springer, New York, 1984.
  16. [D2] J. Diestel, Uniform integrability: an introduction, School on Measure Theory and Real Analysis, Grado (Italy), October 14-25, 1991, Rend. Istit. Mat. Univ. Trieste 23 (1991), 41-80.
  17. [DU] J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc., Providence, 1977.
  18. [DG] S. J. Dilworth and M. Girardi, Bochner vs. Pettis norms: examples and results, in: Banach Spaces, Bor-Luh Lin and W. B. Johnson (eds.), Contemp. Math. 144, Amer. Math. Soc., Providence, R.I., 1993, 69-80.
  19. [Ga] V. F. Gaposhkin, Convergence and limit theorems for sequences of random variables, Theory Probab. Appl. 17 (1972), 379-400.
  20. [G1] M. Girardi, Compactness in L1, Dunford-Pettis operators, geometry of Banach spaces, Proc. Amer. Math. Soc. 111 (1991), 767-777.
  21. [G2] M. Girardi, Weak vs. norm compactness in L1, the Bocce criterion, Studia Math. 98 (1991), 95-97.
  22. [HU] F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149-182.
  23. [IT] A. and C. Ionescu-Tulcea, Topics in the Theory of Lifting, Springer, Berlin, 1969.
  24. [J] V. Jalby, Contribution aux problèmes de convergence des fonctions vectorielles et des intégrales fonctionnelles, Thèse de Doctorat, Université Montpellier II, 1993.
  25. [Jaw] A. Jawhar, Mesures de transition et applications, Sém. Anal. Convexe 14 (1984), 13.1-13.62.
  26. [N] J. Neveu, Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco, 1965.
  27. [P] B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304.
  28. [SW] G. Schlüchtermann and R. F. Wheeler, On strongly WCG Banach spaces, Math. Z. 199 (1988), 387-398.
  29. [S] L. Schwartz, Radon Measures, Oxford University Press, London, 1973.
  30. [T] M. Talagrand, Weak Cauchy sequences in L1(E), Amer. J. Math. 106 (1984), 703-724.
  31. [V1] M. Valadier, Young measures, in: Methods of Nonconvex Analysis, A. Cellina (ed.), Lecture Notes in Math. 1446, Springer, Berlin, 1990, 152-188.
  32. [V2] M. Valadier, Oscillations et compacité forte dans L1, Sém. Anal. Convexe 21 (1991), 7.1-7.10.
Pages:
241-262
Main language of publication
English
Received
1993-09-10
Accepted
1994-03-02
Published
1994
Exact and natural sciences