ArticleOriginal scientific textFrom weak to strong types of
Title
From weak to strong types of -convergence by the Bocce criterion
Authors 1, 2, 3
Affiliations
- Mathematical Institute, University of Utrecht, P.O. Box 80.010, 3508 Ta Utrecht, The Netherlands
- Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208, U.S.A.
- Département de Mathématiques, Université Montpellier II, 34095 Montpellier Cedex 05, France
Abstract
Necessary and sufficient oscillation conditions are given for a weakly convergent sequence (resp. relatively weakly compact set) in the Bochner-Lebesgue space to be norm convergent (resp. relatively norm compact), thus extending the known results for . Similarly, necessary and sufficient oscillation conditions are given to pass from weak to limited (and also to Pettis-norm) convergence in . It is shown that tightness is a necessary and sufficient condition to pass from limited to strong convergence. Other implications between several modes of convergence in are also studied.
Bibliography
- [ACV] A. Amrani, C. Castaing et M. Valadier, Méthodes de troncature appliquées à des problèmes de convergence faible ou forte dans
, Arch. Rational Mech. Anal. 117 (1992), 167-191. - [B1] E. J. Balder, On weak convergence implying strong convergence in
-spaces, Bull. Austral. Math. Soc. 33 (1986), 363-368. - [B2] E. J. Balder, On equivalence of strong and weak convergence in
-spaces under extreme point conditions, Israel J. Math. 75 (1991), 1-23. - [B3] E. J. Balder, From weak to strong
-convergence by an oscillation restriction criterion of BMO type, preprint No. 666, Dept. of Math., University of Utrecht, 1991. - [B4] E. J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory, SIAM J. Control Optim. 22 (1984), 570-598.
- [B5] E. J. Balder, On Prohorov's theorem for transition probabilities, Sém. Anal. Convexe 19 (1989), 9.1-9.11.
- [BH1] J. Batt and W. Hiermeyer, Weak compactness in the space of Bochner integrable functions, unpublished manuscript, 1980.
- [BH2] J. Batt and W. Hiermeyer, On compactness in
in the weak topology and in the topology , Math. Z. 182 (1983), 409-423. - [BS] J. Batt and G. Schlüchtermann, Eberlein compacts in
, Studia Math. 83 (1986), 239-250. - [BD] J. K. Brooks and N. Dinculeanu, Weak compactness in spaces of Bochner integrable functions, Adv. in Math. 24 (1977), 172-188.
- [C1] C. Castaing, Un résultat de compacité lié à la propriété des ensembles Dunford-Pettis dans
, Sém. Anal. Convexe 9 (1979), 17.1-17.7. - [C2] C. Castaing, Sur la décomposition de Slaby. Applications aux problèmes de convergences en probabilités. Economie mathématique. Théorie du contrôle. Minimisation, Sém. Anal. Convexe 19 (1989), 3.1-3.35.
- [CV] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer, Berlin, 1977.
- [Da] B. Dawson, Convergence of conditional expectation operators and the compact range property, Ph.D. dissertation, University of North Texas, 1992.
- [D1] J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Springer, New York, 1984.
- [D2] J. Diestel, Uniform integrability: an introduction, School on Measure Theory and Real Analysis, Grado (Italy), October 14-25, 1991, Rend. Istit. Mat. Univ. Trieste 23 (1991), 41-80.
- [DU] J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc., Providence, 1977.
- [DG] S. J. Dilworth and M. Girardi, Bochner vs. Pettis norms: examples and results, in: Banach Spaces, Bor-Luh Lin and W. B. Johnson (eds.), Contemp. Math. 144, Amer. Math. Soc., Providence, R.I., 1993, 69-80.
- [Ga] V. F. Gaposhkin, Convergence and limit theorems for sequences of random variables, Theory Probab. Appl. 17 (1972), 379-400.
- [G1] M. Girardi, Compactness in
, Dunford-Pettis operators, geometry of Banach spaces, Proc. Amer. Math. Soc. 111 (1991), 767-777. - [G2] M. Girardi, Weak vs. norm compactness in
, the Bocce criterion, Studia Math. 98 (1991), 95-97. - [HU] F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149-182.
- [IT] A. and C. Ionescu-Tulcea, Topics in the Theory of Lifting, Springer, Berlin, 1969.
- [J] V. Jalby, Contribution aux problèmes de convergence des fonctions vectorielles et des intégrales fonctionnelles, Thèse de Doctorat, Université Montpellier II, 1993.
- [Jaw] A. Jawhar, Mesures de transition et applications, Sém. Anal. Convexe 14 (1984), 13.1-13.62.
- [N] J. Neveu, Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco, 1965.
- [P] B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304.
- [SW] G. Schlüchtermann and R. F. Wheeler, On strongly WCG Banach spaces, Math. Z. 199 (1988), 387-398.
- [S] L. Schwartz, Radon Measures, Oxford University Press, London, 1973.
- [T] M. Talagrand, Weak Cauchy sequences in
, Amer. J. Math. 106 (1984), 703-724. - [V1] M. Valadier, Young measures, in: Methods of Nonconvex Analysis, A. Cellina (ed.), Lecture Notes in Math. 1446, Springer, Berlin, 1990, 152-188.
- [V2] M. Valadier, Oscillations et compacité forte dans
, Sém. Anal. Convexe 21 (1991), 7.1-7.10.