ArticleOriginal scientific text
Title
Every separable Banach space has a bounded strong norming biorthogonal sequence which is also a Steinitz basis
Authors 1
Affiliations
- Dipartimento di Matematica del Politecnico, Piazza Leonardo da Vinci, 32 20133 Milano, Italy
Abstract
Every separable, infinite-dimensional Banach space X has a biorthogonal sequence , with norming on X and bounded, so that, for every x in X and x* in X*, there exists a permutation {π(n)} of {n} so that
.
Bibliography
- S. Banach, Théorie des opérations linéaires, Chelsea, New York, 1932.
- W. J. Davis and W. B. Johnson, On the existence of fundamental and total bounded biorthogonal systems in Banach spaces, Studia Math. 45 (1973), 173-179.
- W. J. Davis and I. Singer, Boundedly complete M-bases and complemented subspaces in Banach spaces, Trans. Amer. Math. Soc. 175 (1973), 187-194.
- A. Dvoretzky, Some results on convex bodies and Banach spaces, in: Proc. Internat. Sympos. on Linear Spaces, Jerusalem Academic Press, 1961, 123-160.
- P. Enflo, A counterexample to the approximation problem in Banach spaces, Acta Math. 130 (1973), 309-317.
- V. P. Fonf, Operator bases and generalized summation bases, Dokl. Akad. Nauk Ukrain. SSR Ser. A 1986 (11), 16-18 (in Russian).
- V. I. Gurarii and M. I. Kadec, On permutations of biorthogonal decompositions, Istituto Lombardo, 1991.
- E. Indurain and P. Terenzi, A characterization of basis sequences in Banach spaces, Rend. Accad. dei XL 18 (1986), 207-212.
- M. I. Kadec, Nonlinear operator bases in a Banach space, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 2 (1966), 128-130 (in Russian).
- M. I. Kadec and A. Pełczyński, Basic sequences, biorthogonal systems and norming sets in Banach and Fréchet spaces, Studia Math. 25 (1965), 297-323 (in Russian).
- G. W. Mackey, Note on a theorem of Murray, Bull. Amer. Math. Soc. 52 (1946), 322-325.
- P. Mankiewicz and N. J. Nielsen, A superreflexive Banach space with a finite dimensional decomposition so that no large subspace has a basis, Odense University Preprints, 1989.
- A. Markushevich, Sur les bases (au sens large) dans les espaces linéaires, Dokl. Akad. Nauk SSSR 41 (1943), 227-229.
- A. M. Olevskiĭ, Fourier series of continuous functions with respect to bounded orthonormal systems, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 387-432.
- R. I. Ovsepian and A. Pełczyński, On the existence of a fundamental total and bounded biorthogonal sequence in every separable Banach space, and related constructions of uniformly bounded orthonormal systems in
, Studia Math. 54 (1975), 149-159. - A. Pełczyński, All separable Banach space admit for every ε > 0 fundamental total and bounded by 1 + ε biorthogonal sequences, ibid. 55 (1976), 295-304.
- A. Plans and A. Reyes, On the geometry of sequences in Banach spaces, Arch. Math. (Basel) 40 (1983), 452-458.
- W. H. Ruckle, Representation and series summability of complete biorthogonal sequences, Pacific J. Math. 34 (1970), 511-528.
- W. H. Ruckle, On the classification of biorthogonal sequences, Canad. J. Math. 26 (1974), 721-733.
- I. Singer, Bases in Banach Spaces II, Springer, 1981.
- S. Szarek, A Banach space without a basis which has the bounded approximation property, Acta Math. 159 (1987), 81-98.
- P. Terenzi, Representation of the space spanned by a sequence in a Banach space, Arch. Math. (Basel) 43 (1984), 448-459.
- P. Terenzi, On the theory of fundamental norming bounded biorthogonal systems in Banach spaces, Trans. Amer. Math. Soc. 299 (1987), 497-511.
- P. Terenzi, On the properties of the strong M-bases in Banach spaces, Sem. Mat. Garcia de Galdeano, Zaragoza, 1987.