Some martingale analogues of Sawyer's two-weight norm inequality for the Hardy-Littlewood maximal function Mf are shown for the Doob maximal function of martingales.
Department of Mathematics, Kansas State University, Manhattan, Kansas 66506, U.S.A.
Department of Mathematics, Brown University, Providence, Rhode Island 02912, U.S.A.
Bibliografia
[1] J. L. Doob, Stochastic Processes, Wiley, New York, 1953.
[2] R. A. Hunt, D. S. Kurtz and C. J. Neugebauer, A note on the equivalence of $A_p$ and Sawyer's condition for equal weights, in: Conf. Harmonic Analysis in Honor of A. Zygmund, Wadsworth, Belmont, Calif., 1981, 156-158.
[3] M. Izumisawa and N. Kazamaki, Weighted norm inequalities for martingales, Tôhoku Math. J. 29 (1977), 115-124.
[4] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
[5] E. Sawyer, A characterization of a two weight norm inequality for maximal operators, Studia Math. 75 (1982), 1-11.