ArticleOriginal scientific text
Title
One-parameter subgroups and the B-C-H formula
Authors 1
Affiliations
- Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland
Abstract
An algebraic scheme for Lie theory of topological groups with "large" families of one-parameter subgroups is proposed. Such groups are quotients of "ℝ-groups", i.e. topological groups equipped additionally with the continuous exterior binary operation of multiplication by real numbers, and generated by special ("exponential") elements. It is proved that under natural conditions on the topology of an ℝ-group its group multiplication is described by the B-C-H formula in terms of the associated Lie algebra.
Bibliography
- G. Birkhoff, Analytical groups, Trans. Amer. Math. Soc. 43 (1938), 61-101.
- N. Bourbaki, Groupes et algèbres de Lie, Chap. II, Hermann, Paris, 1971.
- D. B. A. Epstein, The simplicity of certain groups of homeomorphisms, Compositio Math. 22 (1970), 165-173.
- J. Grabowski and W. Wojtyński, Quotient groups of linear topological spaces, Colloq. Math. 59 (1991), 35-51.
- M. Herman, Simplicité du groupe des difféomorphismes de classe
, isotopes à l'identité, du tore de dimension n, C. R. Acad. Sci. Paris Sér. A 273 (1971), 232-234. - J. Leslie, On a differentiable structure for the group of diffeomorphisms, Topology 6 (1967), 263-271.
- Yu. V. Linnik, An elementary solution of the problem of Waring by the Schnirelmann method, Mat. Sb. (N.S.) 12 (1943), 225-230 (in Russian).
- B. Maissen, Lie-Gruppen mit Banachräumen als Parameterräumen, Acta Math. 108 (1962), 229-269.
- J. Milnor, Remarks on infinite-dimensional Lie groups, in: Relativity, Groups and Topology, II (Les Houches, 1983), North-Holland, Amsterdam, 1984, 1007-1057.
- H. Omori, On the group of diffeomorphisms of a compact manifold, in: Global Analysis, Proc. Sympos. Pure Math. 15, Amer. Math. Soc., 1970, 167-183.
- J. Palis, Vector fields generate few diffeomorphisms, Bull. Amer. Math. Soc. 80 (1974), 503-505.
- J.-P. Serre, Lie Algebras and Lie Groups, Benjamin, New York, 1965.
- S.-S. Chen and R. Yoh, The category of generalized Lie groups, Trans. Amer. Math. Soc. 199 (1974), 281-294.
- W. Thurston, Foliations and groups of diffeomorphisms, Bull. Amer. Math. Soc. 80 (1974), 304-307.