Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

1994 | 111 | 1 | 19-52

Tytuł artykułu

Spaces defined by the level function and their duals

Autorzy

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
The classical level function construction of Halperin and Lorentz is extended to Lebesgue spaces with general measures. The construction is also carried farther. In particular, the level function is considered as a monotone map on its natural domain, a superspace of $L^p$. These domains are shown to be Banach spaces which, although closely tied to $L^p$ spaces, are not reflexive. A related construction is given which characterizes their dual spaces.

Twórcy

  • Department of Mathematics, University of Western Ontario, London, Ontario, N6A 5B7, Canada

Bibliografia

  • [1] G. Bennett, Some elementary inequalities, III, Quart. J. Math. Oxford Ser. (2) 42 (1991), 149-174.
  • [2] J. S. Bradley, Hardy inequalities with mixed norms, Canad. Math. Bull. 21 (1978), 405-408.
  • [3] I. Halperin, Function spaces, Canad. J. Math. 5 (1953), 273-288.
  • [4] G. G. Lorentz, Bernstein Polynomials, Univ. of Toronto Press, Toronto, 1953.
  • [5] V. G. Maz'ja, Sobolev Spaces, Springer, Berlin, 1985.
  • [6] B. Muckenhoupt, Hardy's inequality with weights, Studia Math. 44 (1972), 31-38.
  • [7] H. L. Royden, Real Analysis, 2nd ed., Macmillan, New York, 1968.
  • [8] G. J. Sinnamon, Operators on Lebesgue spaces with general measures, Doctoral Thesis, McMaster Univ., 1987.
  • [9] G. J. Sinnamon, Weighted Hardy and Opial-type inequalities, J. Math. Anal. Appl. 160 (1991), 434-445.
  • [10] G. J. Sinnamon, Interpolation of spaces defined by the level function, in: Harmonic Analysis, ICM-90 Satellite Proceedings, Springer, Tokyo, 1991, 190-193.

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-smv111i1p19bwm