An isomorphism between some anisotropic Besov and sequence spaces is established, and the continuity of a Stieltjes-type integral operator, acting on some of these spaces, is proved.
Mathematical Institute, Polish Academy of Sciences, Gdańsk, Branch, Abrahama 18, 81-825 Sopot, Poland
Bibliografia
[1] Z. Ciesielski, Properties of the orthonormal Franklin system II, Studia Math. 27 (1966), 289-323.
[2] Z. Ciesielski, Constructive function theory and spline systems, ibid. 53 (1975), 277-302.
[3] Z. Ciesielski and J. Domsta, Construction of an orthonormal basis in $C^m(I^d)$ and $W^m_p(I^d)$, ibid. 41 (1972), 211-224.
[4] Z. Ciesielski and T. Figiel, Spline bases in classical function spaces on compact $C^∞$ manifolds, Part I, ibid. 76 (1983), 1-58.
[5] Z. Ciesielski and T. Figiel, Spline bases in classical function spaces on compact $C^∞$ manifolds, Part II, ibid., 95-136.
[6] Z. Ciesielski, G. Kerkyacharian et B. Roynette, Quelques espaces fonctionnels associés à des processus gaussiens, ibid. 107 (1993), 171-204.
[7] A. Kamont, A note on the isomorphism of some anisotropic Besov-type function and sequence spaces, in: Proc. Conf. "Open Problems in Approximation Theory", Voneshta Voda, June 18-24, 1993, to appear.
[8] S. Ropela, Spline bases in Besov spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 319-325.