ArticleOriginal scientific text

Title

Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator

Authors 1, 2

Affiliations

  1. Department of Mathematics, Siena College, Loudonville, New York 12211, U.S.A.
  2. Department of Mathematics, Brock University, St. Catharines, Ontario LS2A1, Canada

Abstract

Necessary and sufficient conditions are given for the Hardy-Littlewood maximal operator to be bounded on a weighted Orlicz space when the complementary Young function satisfies Δ2. Such a growth condition is shown to be necessary for any weighted integral inequality to occur. Weak-type conditions are also investigated.

Bibliography

  1. R. Bagby, Weak bounds for the maximal function in weighted Orlicz spaces, Studia Math. 95 (1990), 195-204.
  2. N. K. Bari and S. B. Stečkin [S. B. Stechkin], Best approximation and differential properties of two conjugate functions, Trudy Moskov. Mat. Obshch. 5 (1956), 483-522 (in Russian).
  3. S. Bloom and R. Kerman, Weighted LΦ integral inequalities for operators of Hardy type, Studia Math. 110 (1994), 35-52.
  4. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250.
  5. A. S. Gogatishvili, General weak-type estimates for the maximal operators and singular integrals, preprint.
  6. A. S. Gogatishvili and L. Pick, Weighted inequalities of weak and extra-weak type for the maximal operator and Hilbert transform, preprint.
  7. R. Kerman and A. Torchinsky, Integral inequalities with weights for the Hardy maximal function, Studia Math. 71 (1981/82), 277-284.
  8. V. Kokilashvili and M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces, World Scientific, 1991.
  9. M. A. Krasnosel'skii [M. A. Krasnosel'skiǐ] and Ya. B. Rutickii [Ya. B. Rutitskiǐ], Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.
  10. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
  11. L. Pick, Weighted inequalities for the Hardy-Littlewood maximal operators in Orlicz spaces, preprint.
  12. L. Quinsheng, Two weight Φ-inequalities for the Hardy operator, Hardy-Littlewood maximal operator and fractional integrals, Proc. Amer. Math. Soc., to appear.
  13. M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991.
  14. T. Shimogaki, Hardy-Littlewood majorants in function spaces, J. Math. Soc. Japan 17 (1965), 365-373.
  15. A. Zygmund, Trigonometric Series, Vol. I, 2nd ed., Cambridge Univ. Press, Cambridge, 1959.
Pages:
149-167
Main language of publication
English
Received
1993-06-23
Accepted
1993-11-05
Published
1994
Exact and natural sciences