PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
1994 | 110 | 2 | 105-114
Tytuł artykułu

Global maximal estimates for solutions to the Schrödinger equation

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Global maximal estimates are considered for solutions to an initial value problem for the Schrödinger equation.
Słowa kluczowe
Czasopismo
Rocznik
Tom
110
Numer
2
Strony
105-114
Opis fizyczny
Daty
wydano
1994
otrzymano
1993-02-02
Twórcy
autor
  • Department of Mathematics, Royal Institute of Technology, S-100 44 Stockholm, Sweden
Bibliografia
  • [1] J. Bourgain, A remark on Schrödinger operators, Israel J. Math., to appear.
  • [2] A. Carbery, Radial Fourier multipliers and associated maximal functions, in: Recent Progress in Fourier Analysis, Proc. Seminar on Fourier Analysis held in El Escorial, Spain, 1983, North-Holland Math. Stud. 111, North-Holland, 1985, 49-56.
  • [3] L. Carleson, Some analytical problems related to statistical mechanics, in: Euclidean Harmonic Analysis, Proc. Seminars held at the Univ. of Maryland, 1979, Lecture Notes in Math. 779, Springer, 1979, 5-45.
  • [4] M. Cowling, Pointwise behaviour of solutions to Schrödinger equations, in: Harmonic Analysis, Proc. Conf. Cortona, Italy, 1982, Lecture Notes in Math. 992, Springer, 1983, 83-90.
  • [5] B. E. J. Dahlberg and C. E. Kenig, A note on the almost everywhere behaviour of solutions to the Schrödinger equation, in: Harmonic Analysis, Proc. Conf. Univ. of Minnesota, Minneapolis, 1981, Lecture Notes in Math. 908, Springer, 1982, 205-209.
  • [6] C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), 33-69.
  • [7] C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc. 4 (1991), 323-347.
  • [8] C. E. Kenig and A. Ruiz, A strong type (2,2) estimate for a maximal operator associated to the Schrödinger equation, Trans. Amer. Math. Soc. 280 (1983), 239-245.
  • [9] E. Prestini, Radial functions and regularity of solutions to the Schrödinger equation, Monatsh. Math. 109 (1990), 135-143.
  • [10] P. Sjölin, Convolution with oscillating kernels, Indiana Univ. Math. J. 30 (1981), 47-55.
  • [11] P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), 699-715.
  • [12] P. Sjölin, Radial functions and maximal estimates for solutions to the Schrödinger equation, J. Austral. Math. Soc., to appear.
  • [13] E. M. Stein, Oscillatory integrals in Fourier analysis, in: Beijing Lectures in Harmonic Analysis, Ann. of Math. Stud. 112, Princeton Univ. Press, 1986, 307-355.
  • [14] L. Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), 874-878.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-smv110i2p105bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.