ArticleOriginal scientific text

Title

When is there a discontinuous homomorphism from L¹(G)?

Authors 1

Affiliations

  1. Fachbereich 9 Mathematik, Universität des Saarlandes, Postfach 151150, 66041 Saarbrücken, Germany

Abstract

Let A be an A*-algebra with enveloping C*-algebra C*(A). We show that, under certain conditions, a homomorphism from C*(A) into a Banach algebra is continuous if and only if its restriction to A is continuous. We apply this result to the question in the title.

Bibliography

  1. [A-D] E. Albrecht and H. G. Dales, Continuity of homomorphisms from C*-algebras and other Banach algebras, in: J. M. Bachar, W. G. Bade, P. C. Curtis Jr., H. G. Dales and M. P. Thomas (eds.), Radical Banach Algebras and Automatic Continuity, Lecture Notes in Math. 975, Springer, 1983, 375-396.
  2. [Bar1] B. A. Barnes, Ideal and representation theory of the L1-algebra of a group with polynomial growth, Colloq. Math. 45 (1981), 301-315.
  3. [Bar2] B. A. Barnes, Ditkin's condition and [SIN]-groups, Monatsh. Math. 96 (1983), 1-15.
  4. [B-L-Sch-V] J. Boidol, H. Leptin, J. Schürmann and D. Vahle, Räume primitiver Ideale von Gruppenalgebren, Math. Ann. 236 (1978), 1-13.
  5. [B-D] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Ergeb. Math. Grenzgeb. 80, Springer, 1973.
  6. [Dal] H. G. Dales, Banach Algebras and Automatic Continuity, Oxford Univ. Press, in preparation.
  7. [D-W] H. G. Dales and W. H. Woodin, An Introduction to Independence for Analysts, London Math. Soc. Lecture Note Ser. 115, Cambridge Univ. Press, 1987.
  8. [G-M] S. Grosser and M. Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math. 246 (1971), 1-40.
  9. [H-K-K] W. Hauenschild, E. Kaniuth and A. Kumar, Ideal structure of Beurling algebras on [FC]¯-groups, J. Funct. Anal. 51 (1983) 213-228.
  10. [Hel] A. Ya. Helemskiĭ, The Homology of Banach and Topological Algebras, Math. Appl. (Soviet Ser.) 41, Kluwer, 1989 (translated from the Russian).
  11. [Lau] K. B. Laursen, On discontinuous homomorphisms from L1(G), Math. Scand. 30 (1972), 263-266.
  12. [Pal] T. W. Palmer, Classes of nonabelian, noncompact, locally compact groups, Rocky Mountain J. Math. 8 (1978), 683-741.
  13. [Ped] G. K. Pedersen, C*-Algebras and their Automorphism Groups, London Math. Soc. Monographs 14, Academic Press, 1979.
  14. [Run] V. Runde, Homomorphisms from L1(G) for G ∈ [FIA]¯ ∪ [Moore], J. Funct. Anal., to appear.
  15. [Sin1] A. M. Sinclair, Homomorphisms from C*-algebras, Proc. London Math. Soc. (3) 29 (1974), 435-452.
  16. [Sin2] A. M. Sinclair, Automatic Continuity of Linear Operators, London Math. Soc. Lecture Note Ser. 21, Cambridge Univ. Press, 1976.
Pages:
97-104
Main language of publication
English
Received
1993-11-10
Accepted
1994-01-25
Published
1994
Exact and natural sciences