ArticleOriginal scientific text

Title

Weighted LΦ integral inequalities for operators of Hardy type

Authors 1, 2

Affiliations

  1. Department of Mathematics, Siena College, Loudonville, New York 12211, U.S.A.
  2. Department of Mathematics, Brock University, St. Catharines, Ontario, Canada LS2A1

Abstract

Necessary and sufficient conditions are given on the weights t, u, v, and w, in order for Φ2-1(ʃΦ2(w(x)|Tf(x)|)t(x)dx)Φ1-1(ʃΦ1(Cu(x)|f(x)|)v(x)dx) to hold when Φ1 and Φ2 are N-functions with Φ2Φ1-1 convex, and T is the Hardy operator or a generalized Hardy operator. Weak-type characterizations are given for monotone operators and the connection between weak-type and strong-type inequalities is explored.

Bibliography

  1. M. Artola, untitled and unpublished manuscript.
  2. S. Bloom and R. Kerman, Weighted norm inequalities for operators of Hardy type, Proc. Amer. Math. Soc. 113 (1991), 135-141.
  3. J. S. Bradley, Hardy inequalities with mixed norms, Canad. Math. Bull. 21 (1978), 405-408.
  4. H. Heinig and L. Maligranda, Interpolation with weights in Orlicz spaces, Luleå University of Technology, Department of Applied Mathematics Research Report 03 (1992).
  5. S. S. Kazarian, Integral inequalities in Orlicz reflexive weighted spaces for the conjugate function, Dokl. Akad. Nauk Armyan. SSR 25 (3) (1990), 261-273 (in Russian).
  6. R. Kerman and A. Torchinsky, Integral inequalities with weights for the Hardy maximal function, Studia Math. 71 (1981/82), 277-284.
  7. M. A. Krasnosel'skii [M. A. Krasnosel'skiĭ] and Ya. B. Rutickii [Ya. B. Rutitskiĭ], Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.
  8. F. Martín-Reyes and E. Sawyer, Weighted norm inequalities for the Riemann-Liouville fractional integral operators, Proc. Amer. Math. Soc. 106 (1989), 727-733.
  9. B. Muckenhoupt, Hardy's inequality with weights, Studia Math. 34 (1972), 31-38.
  10. L. Quinsheng, Two weight Φ-inequalities for the Hardy operator, Hardy-Littlewood maximal operator and fractional integrals, Proc. Amer. Math. Soc., to appear.
  11. M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991.
  12. E. Sawyer, A characterization of a two-weight norm inequality for maximal operators, Studia Math. 75 (1982), 1-11.
  13. E. Sawyer, A characterization of two weight norm inequalities for fractional and Poisson integrals, Trans. Amer. Math. Soc. 302 (1988), 533-545.
  14. V. Stepanov, Two-weighted estimates for Riemann-Liouville integrals, preprint no. 39, Czech. Acad. Sci., 1988.
  15. G. Talenti, Osservazioni sopra una classe di disuguaglianze, Rend. Sem. Mat. Fis. Milano 39 (1969), 171-185.
  16. G. Tomaselli, A class of inequalities, Boll. Un. Mat. Ital. 21 (1969), 622-631.
  17. A. Zygmund, Trigonometric Series, Vol. I, 2nd ed., Cambridge Univ. Press, Cambridge, 1959.
Pages:
35-52
Main language of publication
English
Received
1993-03-18
Published
1994
Exact and natural sciences