ArticleOriginal scientific text
Title
Measures of noncompactness and normal structure in Banach spaces
Authors 1, 2, 1
Affiliations
- Departamento de Análisis Matemático, Facultad de Matemáticas, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
- Departamento de Matematicas, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, Málaga, Spain
Abstract
Sufficient conditions for normal structure of a Banach space are given. One of them implies reflexivity for Banach spaces with an unconditional basis, and also for Banach lattices.
Keywords
normal structure, nonexpansive mappings, measures of noncompactness
Bibliography
- [B] J. Banaś, On modulus of noncompact convexity and its properties, Canad. Math. Bull. 30 (1987), 186-192.
- [D-S] D. van Dulst and B. Sims, Fixed points of nonexpansive mappings and Chebyshev centers in Banach spaces with norms of type (KK), in: Banach Space Theory and Its Applications, Lecture Notes in Math. 991, Springer, Berlin, 1983, 35-43.
- [G-J-L] J. García-Falset, A. Jiménez-Melado and E. Lloréns-Fuster, A characterization of normal structure, in: Proc. Second Internat. Conf. Fixed Point Theory and Appl., Halifax, 1991, K. K. Tan (ed.), World Sci., Singapore, 1992, 122-129.
- [G-K] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math. 28, Cambridge Univ. Press, 1990.
- [G-S] K. Goebel and T. Sękowski, The modulus of noncompact convexity, Ann. Univ. Mariae Curie-Skłodowska 38 (1984), 41-48.
- [G-LD] J. P. Gossez and E. Lami Dozo, Some geometrical properties related to the fixed-point theory for nonexpansive mappings, Pacific J. Math. 40 (1972), 565-573.
- [H] R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 743-749.
- [K] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006,.
- [KU] D. N. Kutzarova, Every (β)-space has the Banach-Saks property, C. R. Acad. Bulgare Sci. 42 (11) (1989), 9-11.
- [L-Tz] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I-II, Springer, 1977.
- [L] T. Landes, Normal structure and the sum property, Pacific J. Math. 123 (1986), 127-147.
- [M] V. Montesinos, Drop property equals reflexivity, Studia Math. 87 (1987), 93-100.
- [N-S-W] J. L. Nelson, K. L. Singh and J. H. M. Whitfield, Normal structures and nonexpansive mappings in Banach spaces, in: Nonlinear Analysis, Th. M. Rhassias (ed.), World Sci., Singapore, 1987, 433-492.
- [R1] S. Rolewicz, On drop property, Studia Math. 85 (1987), 27-35.
- [R2] S. Rolewicz, On Δ-uniform convexity and drop property, ibid. 87 (1987), 181-191.
- [S] B. Sims, Fixed points of nonexpansive maps on weak and weak*-compact sets, Queen's Univ. of Kingston Lecture Notes, 1982.