ArticleOriginal scientific text

Title

Outer factorization of operator valued weight functions on the torus

Authors 1

Affiliations

  1. Department of Mathematics, University of Louisville, Louisville, Kentucky 40292, U.S.A.

Abstract

An exact criterion is derived for an operator valued weight function W(eis,eit) on the torus to have a factorization W(eis,eit)=Φ(eis,eit)Φ(eis,eit), where the operator valued Fourier coefficients of Φ vanish outside of the Helson-Lowdenslager halfplane Λ={(m,n)2:m1}{(0,n):n0}, and Φ is "outer" in a related sense. The criterion is expressed in terms of a regularity condition on the weighted space L2(W) of vector valued functions on the torus. A logarithmic integrability test is also provided. The factor Φ is explicitly constructed in terms of Toeplitz operators and other structures associated with W. The corresponding version of Szegö's infimum is given.

Keywords

outer factorization, Toeplitz operator, prediction theory, Szegö's infimum, multivariate stationary process

Bibliography

  1. D. A. Devinatz, The factorization of operator valued functions, Ann. of Math. (2) 73 (1961), 458-495.
  2. H. Helson and D. Lowdenslager, Prediction theory and Fourier series in several variables I, II, Acta Math. 99 (1958), 165-202; ibid. 106 (1961), 175-213.
  3. H. Korezlioglu and Ph. Loubaton, Spectral factorization of wide sense stationary processes on 2, J. Multivariate Anal. 19 (1986), 24-47.
  4. Ph. Loubaton, A regularity criterion for lexicographical prediction of multivariate wide-sense stationary processes on 2 with non-full-rank spectral densities, J. Funct. Anal. 104 (1992), 198-228.
  5. D. Lowdenslager, On factoring matrix valued functions, Ann. of Math. (2) 78 (1963), 450-454.
  6. S. C. Power, Spectral characterization of the Wold-Zasuhin decomposition and prediction-error operator, Math. Proc. Cambridge Philos. Soc. 110 (1991), 559-567.
  7. M. Rosenblum, Vectorial Toeplitz operators and the Fejér-Riesz theorem, J. Math. Anal. Appl. 23 (1968), 139-147.
  8. M. Rosenblum and J. Rovnyak, Hardy Classes and Operator Theory, Oxford Univ. Press, New York, 1985.
  9. Yu. A. Rozanov, Stationary Random Processes, Holden-Day, San Francisco, 1967.
  10. G. Szegö, Über die Randwerte analytischer Funktionen, Math. Ann. 84 (1921), 232-244.
  11. N. Wiener and E. J. Akutowicz, A factorization of positive Hermitian matrices, J. Math. Mech. 8 (1959), 111-120.
  12. N. Wiener and P. Masani, The prediction theory of multivariate stochastic processes I, II, Acta Math. 98 (1957), 111-150; ibid. 99 (1958), 93-137.
Pages:
19-34
Main language of publication
English
Received
1993-03-16
Accepted
1993-09-03
Published
1994
Exact and natural sciences