ArticleOriginal scientific text
Title
Outer factorization of operator valued weight functions on the torus
Authors 1
Affiliations
- Department of Mathematics, University of Louisville, Louisville, Kentucky 40292, U.S.A.
Abstract
An exact criterion is derived for an operator valued weight function on the torus to have a factorization
,
where the operator valued Fourier coefficients of Φ vanish outside of the Helson-Lowdenslager halfplane
,
and Φ is "outer" in a related sense. The criterion is expressed in terms of a regularity condition on the weighted space of vector valued functions on the torus. A logarithmic integrability test is also provided. The factor Φ is explicitly constructed in terms of Toeplitz operators and other structures associated with W. The corresponding version of Szegö's infimum is given.
Keywords
outer factorization, Toeplitz operator, prediction theory, Szegö's infimum, multivariate stationary process
Bibliography
- D. A. Devinatz, The factorization of operator valued functions, Ann. of Math. (2) 73 (1961), 458-495.
- H. Helson and D. Lowdenslager, Prediction theory and Fourier series in several variables I, II, Acta Math. 99 (1958), 165-202; ibid. 106 (1961), 175-213.
- H. Korezlioglu and Ph. Loubaton, Spectral factorization of wide sense stationary processes on
, J. Multivariate Anal. 19 (1986), 24-47. - Ph. Loubaton, A regularity criterion for lexicographical prediction of multivariate wide-sense stationary processes on
with non-full-rank spectral densities, J. Funct. Anal. 104 (1992), 198-228. - D. Lowdenslager, On factoring matrix valued functions, Ann. of Math. (2) 78 (1963), 450-454.
- S. C. Power, Spectral characterization of the Wold-Zasuhin decomposition and prediction-error operator, Math. Proc. Cambridge Philos. Soc. 110 (1991), 559-567.
- M. Rosenblum, Vectorial Toeplitz operators and the Fejér-Riesz theorem, J. Math. Anal. Appl. 23 (1968), 139-147.
- M. Rosenblum and J. Rovnyak, Hardy Classes and Operator Theory, Oxford Univ. Press, New York, 1985.
- Yu. A. Rozanov, Stationary Random Processes, Holden-Day, San Francisco, 1967.
- G. Szegö, Über die Randwerte analytischer Funktionen, Math. Ann. 84 (1921), 232-244.
- N. Wiener and E. J. Akutowicz, A factorization of positive Hermitian matrices, J. Math. Mech. 8 (1959), 111-120.
- N. Wiener and P. Masani, The prediction theory of multivariate stochastic processes I, II, Acta Math. 98 (1957), 111-150; ibid. 99 (1958), 93-137.