ArticleOriginal scientific text
Title
Almost everywhere convergence of Laguerre series
Authors 1, 2
Affiliations
- Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
- Department of Mathematics, National Central University, Chung-Li, Taiwan 32054, Republic of China
Abstract
Let and . Denote by the inner product of f and the Laguerre function . We prove that if satisfies
!$!lim_{λ↓1} \overline lim_{n→∞} ∑_{n
Keywords
almost everywhere convergence, Cesàro means, Laguerre polynomials, Riesz means
Bibliography
- R. Askey and S. Wainger, Mean convergence of expansions in Laguerre and Hermite series, Amer. J. Math. 87 (1965), 695-708.
- C.-P. Chen,
-convergence of Fourier series, J. Austral. Math. Soc. Ser. A 41 (1986), 376-390. - C.-P. Chen, Pointwise convergence of trigonometric series, ibid. 43 (1987), 291-300.
- J. Długosz, Almost everywhere convergence of some summability methods for Laguerre series, Studia Math. 82 (1985), 199-209.
- G. H. Hardy, Divergent Series, Oxford Univ. Press, London, 1973.
- B. Muckenhoupt, Poisson integrals for Hermite and Laguerre expansions, Trans. Amer. Math. Soc. 139 (1969), 231-242.
- B. Muckenhoupt, Mean convergence of Hermite and Laguerre series I, ibid. 147 (1970), 419-431.
- B. Muckenhoupt, Mean convergence of Hermite and Laguerre series II, ibid. 433-460.
- G. Sansone, Orthogonal Functions, Yale Univ. Press, New Haven, Conn., 1959.
- K. Stempak, Mean summability methods for Laguerre series, Trans. Amer. Math. Soc. 322 (1990), 671-690.
- K. Stempak, Almost everywhere summability of Laguerre series, Studia Math. 100 (1991), 129-147.
- K. Stempak, Almost everywhere summability of Laguerre series II, ibid. 103 (1992), 317-327.
- G. Szegö, Orthogonal Polynomials, 3rd ed., Amer. Math. Soc., Providence, R.I., 1974.