ArticleOriginal scientific text

Title

Almost everywhere convergence of Laguerre series

Authors 1, 2

Affiliations

  1. Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
  2. Department of Mathematics, National Central University, Chung-Li, Taiwan 32054, Republic of China

Abstract

Let a+ and fLp(+),1p. Denote by cj the inner product of f and the Laguerre function a_j. We prove that if {cj} satisfies !$!lim_{λ↓1} \overline lim_{n→∞} ∑_{n

Keywords

almost everywhere convergence, Cesàro means, Laguerre polynomials, Riesz means

Bibliography

  1. R. Askey and S. Wainger, Mean convergence of expansions in Laguerre and Hermite series, Amer. J. Math. 87 (1965), 695-708.
  2. C.-P. Chen, L1-convergence of Fourier series, J. Austral. Math. Soc. Ser. A 41 (1986), 376-390.
  3. C.-P. Chen, Pointwise convergence of trigonometric series, ibid. 43 (1987), 291-300.
  4. J. Długosz, Almost everywhere convergence of some summability methods for Laguerre series, Studia Math. 82 (1985), 199-209.
  5. G. H. Hardy, Divergent Series, Oxford Univ. Press, London, 1973.
  6. B. Muckenhoupt, Poisson integrals for Hermite and Laguerre expansions, Trans. Amer. Math. Soc. 139 (1969), 231-242.
  7. B. Muckenhoupt, Mean convergence of Hermite and Laguerre series I, ibid. 147 (1970), 419-431.
  8. B. Muckenhoupt, Mean convergence of Hermite and Laguerre series II, ibid. 433-460.
  9. G. Sansone, Orthogonal Functions, Yale Univ. Press, New Haven, Conn., 1959.
  10. K. Stempak, Mean summability methods for Laguerre series, Trans. Amer. Math. Soc. 322 (1990), 671-690.
  11. K. Stempak, Almost everywhere summability of Laguerre series, Studia Math. 100 (1991), 129-147.
  12. K. Stempak, Almost everywhere summability of Laguerre series II, ibid. 103 (1992), 317-327.
  13. G. Szegö, Orthogonal Polynomials, 3rd ed., Amer. Math. Soc., Providence, R.I., 1974.
Pages:
291-301
Main language of publication
English
Received
1993-08-12
Published
1994
Exact and natural sciences