ArticleOriginal scientific text
Title
Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces
Authors 1, 1
Affiliations
- Departamento de Matemáticas, C-XV Universidad Autónoma, 28049 Madrid, Spain
Abstract
We study sufficient conditions on the weight w, in terms of membership in the classes, for the spline wavelet systems to be unconditional bases of the weighted space . The main tool to obtain these results is a very simple theory of regular Calderón-Zygmund operators.
Keywords
wavelets, splines, spaces, weights, Schauder and unconditional bases
Bibliography
- [B] S. Banach, Théorie des opérations linéaires, Warszawa, 1932; English transl.: Elsevier, 1987.
- [Bo] S. V. Bochkarev, Existence of bases in the space of analytic functions and some properties of the Franklin system, Mat. Sb. 98 (1974), 3-18.
- [Ca] L. Carleson, An explicit unconditional basis in
, Bull. Sci. Math. 104 (1980), 405-416. - [C-C] A. Chang and Z. Ciesielski, Spline characterizations of
, Studia Math. 75 (1983), 183-192. - [C1] Z. Ciesielski, Properties of the orthonormal Franklin system, ibid. 23 (1963), 141-157.
- [C2] Z. Ciesielski, Properties of the orthonormal Franklin system II, ibid. 27 (1966), 289-323.
- [C-F] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, ibid. 51 (1974), 241-250.
- [D] G. David, Wavelets and Singular Integrals on Curves and Surfaces, Lecture Notes in Math. 1465, Springer, 1991.
- [G] J. García-Cuerva, Weighted
spaces, Dissertationes Math. 162 (1979). - [G1] J. García-Cuerva, Extrapolation of weighted norm inequalities from endpoint spaces to Banach lattices, J. London Math. Soc. (2) 46 (1992), 280-294.
- [G-R] J. García-Cuerva and J.-L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 114, 1985.
- [H-M-W] R. A. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-252.
- [J-N] R. Johnson and C. J. Neugebauer, Homeomorphisms preserving
, Rev. Mat. Iberoamericana 3 (1987), 249-273. - [K] K. S. Kazarian, On bases and unconditional bases in the spaces
, 1 ≤ p < ∞ , Studia Math. 71 (1982), 227-249. - [Ma] S. G. Mallat, Multiresolution approximation and wavelet orthonormal bases of
, Trans. Amer. Math. Soc. 315 (1989), 69-87. - [Mau] B. Maurey, Isomorphismes entre espaces
, Acta Math. 145 (1980), 79-120. - [Me] Y. Meyer, Ondelettes et Opérateurs, Vols. I and II, Hermann, Paris, 1990.
- [Mu] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
- [S-S] P. Sjölin and J. O. Strömberg, Basis properties of Hardy spaces, Ark. Mat. 21 (1983), 111-125.
- [St] J. O. Strömberg, A modified Franklin system and higher order spline systems on
as unconditional bases for Hardy spaces, in: Proc. Conf. in Honor of Antoni Zygmund, W. Beckner, A. P. Calderón, R. Fefferman and P. W. Jones (eds.), Wadsworth, 1981, 475-493. - [S-T] J. O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, 1989.
- [S-W] J. O. Strömberg and R. Wheeden, Fractional integrals on weighted
and spaces, Trans. Amer. Math. Soc. 287 (1985), 293-321. - [W] P. Wojtaszczyk, The Franklin system is an unconditional basis in
, Ark. Mat. 20 (1982), 293-300. - [W1] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Stud. Adv. Math. 25, 1991.