ArticleOriginal scientific text

Title

Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces

Authors 1, 1

Affiliations

  1. Departamento de Matemáticas, C-XV Universidad Autónoma, 28049 Madrid, Spain

Abstract

We study sufficient conditions on the weight w, in terms of membership in the Ap classes, for the spline wavelet systems to be unconditional bases of the weighted space Hp(w). The main tool to obtain these results is a very simple theory of regular Calderón-Zygmund operators.

Keywords

wavelets, splines, Hp spaces, Ap weights, Schauder and unconditional bases

Bibliography

  1. [B] S. Banach, Théorie des opérations linéaires, Warszawa, 1932; English transl.: Elsevier, 1987.
  2. [Bo] S. V. Bochkarev, Existence of bases in the space of analytic functions and some properties of the Franklin system, Mat. Sb. 98 (1974), 3-18.
  3. [Ca] L. Carleson, An explicit unconditional basis in H1, Bull. Sci. Math. 104 (1980), 405-416.
  4. [C-C] A. Chang and Z. Ciesielski, Spline characterizations of H1, Studia Math. 75 (1983), 183-192.
  5. [C1] Z. Ciesielski, Properties of the orthonormal Franklin system, ibid. 23 (1963), 141-157.
  6. [C2] Z. Ciesielski, Properties of the orthonormal Franklin system II, ibid. 27 (1966), 289-323.
  7. [C-F] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, ibid. 51 (1974), 241-250.
  8. [D] G. David, Wavelets and Singular Integrals on Curves and Surfaces, Lecture Notes in Math. 1465, Springer, 1991.
  9. [G] J. García-Cuerva, Weighted Hp spaces, Dissertationes Math. 162 (1979).
  10. [G1] J. García-Cuerva, Extrapolation of weighted norm inequalities from endpoint spaces to Banach lattices, J. London Math. Soc. (2) 46 (1992), 280-294.
  11. [G-R] J. García-Cuerva and J.-L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 114, 1985.
  12. [H-M-W] R. A. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-252.
  13. [J-N] R. Johnson and C. J. Neugebauer, Homeomorphisms preserving Ap, Rev. Mat. Iberoamericana 3 (1987), 249-273.
  14. [K] K. S. Kazarian, On bases and unconditional bases in the spaces Lp(dμ), 1 ≤ p < ∞ , Studia Math. 71 (1982), 227-249.
  15. [Ma] S. G. Mallat, Multiresolution approximation and wavelet orthonormal bases of L2(), Trans. Amer. Math. Soc. 315 (1989), 69-87.
  16. [Mau] B. Maurey, Isomorphismes entre espaces H1, Acta Math. 145 (1980), 79-120.
  17. [Me] Y. Meyer, Ondelettes et Opérateurs, Vols. I and II, Hermann, Paris, 1990.
  18. [Mu] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
  19. [S-S] P. Sjölin and J. O. Strömberg, Basis properties of Hardy spaces, Ark. Mat. 21 (1983), 111-125.
  20. [St] J. O. Strömberg, A modified Franklin system and higher order spline systems on n as unconditional bases for Hardy spaces, in: Proc. Conf. in Honor of Antoni Zygmund, W. Beckner, A. P. Calderón, R. Fefferman and P. W. Jones (eds.), Wadsworth, 1981, 475-493.
  21. [S-T] J. O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, 1989.
  22. [S-W] J. O. Strömberg and R. Wheeden, Fractional integrals on weighted Hp and Lp spaces, Trans. Amer. Math. Soc. 287 (1985), 293-321.
  23. [W] P. Wojtaszczyk, The Franklin system is an unconditional basis in H1, Ark. Mat. 20 (1982), 293-300.
  24. [W1] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Stud. Adv. Math. 25, 1991.
Pages:
255-276
Main language of publication
English
Received
1993-02-08
Accepted
1993-09-16
Published
1994
Exact and natural sciences