ArticleOriginal scientific text
Title
Mixed-norm spaces and interpolation
Authors 1, 1
Affiliations
- Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, E-08071 Barcelona, Spain.
Abstract
Let D be a bounded strictly pseudoconvex domain of with smooth boundary. We consider the weighted mixed-norm spaces of holomorphic functions with norm
.
We prove that these spaces can be obtained by real interpolation between Bergman-Sobolev spaces and we give results about real and complex interpolation between them. We apply these results to prove that is the intersection of a Besov space with the space of holomorphic functions on D. Further, we obtain several properties of the mixed-norm spaces.
Keywords
analytic functions, mixed-norm spaces, real interpolation, complex interpolation, Besov spaces of holomorphic functions
Bibliography
- [AM] E. Amar, Suites d'interpolation pour les classes de Bergman de la boule et du polydisque de
, Canad. J. Math. 30 (1978), 711-737. - [BEA] F. Beatrous, Estimates for derivatives of holomorphic functions in pseudoconvex domains, Math. Z. 191 (1986), 91-116.
- [BEA-BU] F. Beatrous and J. Burbea, Sobolev spaces of holomorphic functions in the ball, Dissertationes Math. 276 (1989).
- [BER-LO] J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren Math. Wiss. 223, Springer, Berlin, 1976.
- [BE-CE] A. Bernal and J. Cerdà, Complex interpolation of quasi-Banach spaces with an A-convex containing space, Ark. Mat. 29 (1991), 183-201.
- [B-AN] B. Berndtsson and M. Andersson, Henkin-Ramirez formulas with weight factors, Ann. Inst. Fourier (Grenoble) 32 (3) (1983), 91-110.
- [BR-OR1] J. Bruna and J. M. Ortega, Traces on curves of Sobolev spaces of holomorphic functions, Ark. Mat. 29 (1991), 25-49.
- [BR-OR2] J. Bruna and J. M. Ortega, Interpolation in Hardy-Sobolev spaces, preprint.
- [CO-RO] R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in
, Astérisque 77 (1980), 1-65. - [CO-WE] R. Coifman et G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971.
- [COU] B. Coupet, Décomposition atomique des espaces de Bergman, Indiana Univ. Math. J. 38 (1990), 917-941.
- [DU] P. Duren, Theory of
Spaces, Academic Press, New York, 1970. - [FOR] J. E. Fornæss, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), 529-569.
- [GA] S. Gadbois, Mixed-norm generalizations of Bergman spaces and duality, Proc. Amer. Math. Soc. 104 (1988), 1171-1180.
- [HA-LIT] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals II, Math. Z. 28 (1932), 612-634.
- [HO] T. Holmstedt, Interpolation of quasi-Banach spaces, Math. Scand. 26 (1970), 177-199.
- [LI1] E. Ligocka, On the space of Bloch harmonic functions and interpolation of spaces of harmonic and holomorphic functions, Studia Math. 87 (1987), 223-238.
- [LI2] E. Ligocka, On duality and interpolation for spaces of polyharmonic functions, ibid. 88 (1988), 139-163.
- [LU] D. H. Luecking, Representation and duality in weighted spaces of analytic functions, Indiana Univ. Math. J. 34 (1985), 319-336.
- [OR] J. M. Ortega, The Gleason problem in Bergman-Sobolev spaces, Complex Variables 20 (1992), 157-170.
- [OR-FA] J. M. Ortega and J. Fàbrega, Division and extension in weighted Bergman-Sobolev spaces, Publ. Mat. 36 (1992), 837-859.
- [RO] R. Rochberg, Interpolation by functions in Bergman spaces, Michigan Math. J. 29 (1982), 229-236.
- [SH] J. H. Shi, Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of
, Trans. Amer. Math. Soc. 328 (1991), 619-637. - [ST] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
- [STR] E. Straube, Interpolation between Sobolev and between Lipschitz spaces of analytic functions on starshaped domains, Trans. Amer. Math. Soc. 316 (1989), 653-671.
- [TR1] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.
- [TR2] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983.
- [VA] N. Varopoulus, BMO functions and ∂̅ equation, Pacific J. Math. 71 (1977), 221-273.