ArticleOriginal scientific textSome new Hardy spaces
Title
Some new Hardy spaces (0 < q ≤ 1)
Authors 1
Affiliations
- Department of Mathematics, Beijing Normal University, 100875 Beijing, P.R. China
Abstract
For 0 < q ≤ 1, the author introduces a new Hardy space on the product domain, and gives its generalized Lusin-area characterization. From this characterization, a φ-transform characterization in M. Frazier and B. Jawerth's sense is deduced.
Bibliography
- S. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and
-theory on product domains, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 1-43. - S. A. Chang and R. Fefferman, A continuous version of duality of
with BMO on the bidisc, Ann. of Math. 112 (1980), 179-201. - Y. Z. Chen and K. S. Lau, On some new classes of Hardy spaces, J. Funct. Anal. 84 (1989), 255-278.
- J. Garcí a-Cuerva, Hardy spaces and Beurling algebras, J. London Math. Soc. (2) 39 (1989), 499-513.
- M. Frazier and B. Jawerth, The φ-transform and applications to distribution spaces, in: Function Spaces and Applications, M. Cwikel et al. (eds.), Lecture Notes in Math. 1302, Springer, 1989, 223-246.
- M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), 34-170.
- S. Z. Lu and D. C. Yang, The wavelet characterizations of some new Hardy spaces associated with the Herz spaces, J. Beijing Normal Univ. (Natur. Sci.) 29 (1993), 10-19 (in Chinese).
- S. Z. Lu and D. C. Yang, The Littlewood-Paley function and φ-transform characterizations of a new Hardy space
associated with the Herz space, Studia Math. 101 (1992), 285-298.