ArticleOriginal scientific text

Title

A localization property for Bs_{pq} and Fs_{pq} spaces

Authors 1

Affiliations

  1. Mathematisches Institut, Fakultät Mathematik-Informatik, Universität Jena, D-07740 Jena, Germany

Abstract

Let fj=kakf(2j+1x-2k), where the sum is taken over the lattice of all points k in n having integer-valued components, j∈ℕ and ak. Let Apqs be either Bpqs or Fpqs (s ∈ ℝ, 0 < p < ∞, 0 < q ≤ ∞) on n. The aim of the paper is to clarify under what conditions fjApqs is equivalent to 2j(s-n/p)(k|ak|p)1/pfApqs.

Bibliography

  1. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math. 61, SIAM, Philadelphia, 1992.
  2. D. E. Edmunds and H. Triebel, Eigenvalue distributions of some degenerate elliptic operators: an approach via entropy numbers, Math. Ann., to appear.
  3. M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799.
  4. M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution spaces, J. Funct. Anal. 93 (1990), 34-170.
  5. M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conf. Ser. in Math. 79, Amer. Math. Soc., Providence, 1991.
  6. W. Sickel and H. Triebel, Hölder inequalities and sharp embeddings in function spaces of Bpqs and Fpqs type, submitted.
  7. R. H. Torres, Boundedness results for operators with singular kernels on distribution spaces, Mem. Amer. Math. Soc. 442 (1991).
  8. H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983.
  9. H. Triebel, Theory of Function Spaces, II, Birkhäuser, Basel, 1992.
  10. H. Triebel, Approximation numbers and entropy numbers of embeddings of fractional Besov-Sobolev spaces in Orlicz spaces, Proc. London Math. Soc. 66 (1993), 589-618.
Pages:
183-195
Main language of publication
English
Received
1993-05-31
Published
1994
Exact and natural sciences