ArticleOriginal scientific textA localization property for
Title
A localization property for and spaces
Authors 1
Affiliations
- Mathematisches Institut, Fakultät Mathematik-Informatik, Universität Jena, D-07740 Jena, Germany
Abstract
Let , where the sum is taken over the lattice of all points k in having integer-valued components, j∈ℕ and . Let be either or (s ∈ ℝ, 0 < p < ∞, 0 < q ≤ ∞) on . The aim of the paper is to clarify under what conditions is equivalent to .
Bibliography
- I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math. 61, SIAM, Philadelphia, 1992.
- D. E. Edmunds and H. Triebel, Eigenvalue distributions of some degenerate elliptic operators: an approach via entropy numbers, Math. Ann., to appear.
- M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799.
- M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution spaces, J. Funct. Anal. 93 (1990), 34-170.
- M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conf. Ser. in Math. 79, Amer. Math. Soc., Providence, 1991.
- W. Sickel and H. Triebel, Hölder inequalities and sharp embeddings in function spaces of
and type, submitted. - R. H. Torres, Boundedness results for operators with singular kernels on distribution spaces, Mem. Amer. Math. Soc. 442 (1991).
- H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983.
- H. Triebel, Theory of Function Spaces, II, Birkhäuser, Basel, 1992.
- H. Triebel, Approximation numbers and entropy numbers of embeddings of fractional Besov-Sobolev spaces in Orlicz spaces, Proc. London Math. Soc. 66 (1993), 589-618.