ArticleOriginal scientific text
Title
A weighted vector-valued weak type (1,1) inequality and spherical summation
Authors 1
Affiliations
- Department of Mathematics, Faculty of Education, Kanazawa University, Kanazawa, 920-11, Japan
Abstract
We prove a weighted vector-valued weak type (1,1) inequality for the Bochner-Riesz means of the critical order. In fact, we prove a slightly more general result.
Bibliography
- M. Christ, Weak type (1,1) bounds for rough operators, Ann. of Math. 128 (1988), 19-42.
- M. Christ, Weak type endpoint bounds for Bochner-Riesz multipliers, Rev. Mat. Iberoamericana 3 (1987), 25-31.
- M. Christ and J. L. Rubio de Francia, Weak type (1,1) bounds for rough operators, II, Invent. Math. 93 (1988), 225-237.
- M. Christ and C. D. Sogge, The weak type
convergence of eigenfunction expansions for pseudodifferential operators, ibid. 94 (1988), 421-453. - S. Hofmann, Weighted weak-type (1,1) inequalities for rough operators, Proc. Amer. Math. Soc. 107 (1989), 423-435.
- M. Kaneko and G. Sunouchi, On the Littlewood-Paley and Marcinkiewicz functions in higher dimensions, Tôhoku Math. J. 37 (1985), 343-365.
- S. Z. Lu, M. Taibleson and G. Weiss, On the almost everywhere convergence of Bochner-Riesz means of multiple Fourier series, in: Lecture Notes in Math. 908, Springer, Berlin, 1982, 311-318.
- S. Sato, Entropy and almost everywhere convergence of Fourier series, Tôhoku Math. J. 33 (1981), 593-597.
- S. Sato, Spherical summability and a vector-valued inequality, preprint, 1992.
- A. Seeger, Endpoint estimates for multiplier transformations on compact manifolds, Indiana Univ. Math. J. 40 (1991), 471-533.
- X. Shi and Q. Sun, preprint, Hangzhou University, Hangzhou, 1991.
- F. Soria and G. Weiss, Indiana Univ. Math. J., to appear.
- E. M. Stein, An
function with non-summable Fourier expansion, in: Lecture Notes in Math. 992, Springer, Berlin, 1983, 193-200. - J.-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, Berlin, 1989.
- A. Vargas, Ph.D. thesis, Universidad Autónoma de Madrid.
- A. Zygmund, Trigonometric Series, Cambridge Univ. Press, 1968.