ArticleOriginal scientific text

Title

Spectrum preserving linear mappings in Banach algebras

Authors 1, 2

Affiliations

  1. Département de Mathématiques et de Statistique, Université Laval, Québec, Canada, G1K 7P4
  2. Department of Mathematics, University of the Orange Free State, Bloemfontein, 9300 South Africa

Abstract

Let A and B be two unitary Banach algebras. We study linear mappings from A into B which preserve the polynomially convex hull of the spectrum. In particular, we give conditions under which such surjective linear mappings are Jordan morphisms.

Bibliography

  1. B. Aupetit, Propriétés spectrales des algèbres de Banach, Lecture Notes in Math. 735, Springer, Berlin, 1979.
  2. B. Aupetit, A Primer on Spectral Theory, Springer, Berlin, 1991.
  3. I. N. Herstein, Topics in Ring Theory, University of Chicago Press, Chicago, 1969.
  4. A. A. Jafarian and A. R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66 (1986), 255-261.
  5. I. Kaplansky, Algebraic and Analytic Aspects of Operator Algebras, CBMS Regional Conf. Ser. in Math. 1, Amer. Math. Soc., Providence, 1970.
  6. M. Marcus and R. Purves, Linear transformations on algebras of matrices: the invariance of the elementary symmetric functions, Canad. J. Math. 11 (1959), 383-396.
  7. T. Mouton (H. du) and H. Raubenheimer, On rank one and finite elements of Banach algebras, Studia Math. 104 (1993), 211-219.
  8. C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton, 1960.
Pages:
91-100
Main language of publication
English
Received
1993-06-24
Accepted
1993-09-20
Published
1994
Exact and natural sciences