ArticleOriginal scientific text
Title
Compactness of Hardy-type integral operators in weighted Banach function spaces
Authors 1, 2, 3, 4
Affiliations
- Centre for Mathematical Analysis and its Applications, The University of Sussex, Falmer, Brighton BN1 9QH, England
- Department of Mathematics, University of Agriculture, 160 21 Praha 6, Czech Republic
- School of Mathematics, University of Wales College of Cardiff, Senghenydd Road, Cardiff CF2 4AG, UK
- Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Praha 1, Czech Republic
Abstract
We consider a generalized Hardy operator . For T to be bounded from a weighted Banach function space (X,v) into another, (Y,w), it is always necessary that the Muckenhoupt-type condition be satisfied. We say that (X,Y) belongs to the category M(T) if this Muckenhoupt condition is also sufficient. We prove a general criterion for compactness of T from X to Y when (X,Y) ∈ M(T) and give an estimate for the distance of T from the finite rank operators. We apply the results to Lorentz spaces and characterize pairs of Lorentz spaces which fall into M (T).
Keywords
weighted Banach function space, Hardy-type operator, compact operator, Lorentz space
Bibliography
- [BS] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, 1988.
- [BER] E. I. Berezhnoǐ, Weighted inequalities of Hardy type in general ideal spaces, Soviet Math. Dokl. 43 (1991), 492-495.
- [B] J. S. Bradley, Hardy inequality with mixed norms, Canad. Math. Bull. 21 (1978), 405-408.
- [CHK] H.-M. Chung, R. A. Hunt and D. S. Kurtz, The Hardy-Littlewood maximal function on L(p,q) spaces with weights, Indiana Univ. Math. J. 31 (1982), 109-120.
- [EE] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Oxford Univ. Press, Oxford, 1987.
- [EEH] D. E. Edmunds, W. D. Evans and D. J. Harris, Approximation numbers of certain Volterra integral operators, J. London Math. Soc. 38 (1988), 471-489.
- [EH] W. D. Evans and D. J. Harris, Sobolev embeddings for generalized ridged domains, Proc. London Math. Soc. 54 (1987), 141-175.
- [H] R. A. Hunt, On L(p,q) spaces, Enseign. Math. 12 (1966), 249-276.
- [K] V. M. Kokilashvili, On Hardy's inequalities in weighted spaces, Soobshch. Akad. Nauk. Gruzin. SSR 96 (1979), 37-40 (in Russian).
- [LP] Q. Lai and L. Pick, The Hardy operator,
, and BMO, J. London Math. Soc. (2) 48 (1993), 167-177. - [LUX] W. A. J. Luxemburg, Banach Function Spaces, thesis, Delft, 1955.
- [LZ] W. A. J. Luxemburg and A. C. Zaanen, Compactness of integral operators in Banach function spaces, Math. Ann. 149 (1963), 150-180.
- [M] V. G. Maz'ya, Sobolev Spaces, Springer, Berlin, 1985.
- [MU] B. Muckenhoupt, Hardy's inequality with weights, Studia Math. 44 (1972), 31-38.
- [OK] B. Opic and A. Kufner, Hardy-type Inequalities, Pitman Res. Notes Math. Ser. 219, Longman Sci. & Tech., Harlow, 1990.
- [S] E. T. Sawyer, Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator, Trans. Amer. Math. Soc. 281 (1984), 329-337.
- [T] G. Talenti, Osservazioni sopra una classe di disuguaglianze, Rend. Sem. Mat. Fis. Milano 39 (1969), 171-185.
- [TO] G. Tomaselli, A class of inequalities, Boll. Un. Mat. Ital. 21 (1969), 622-631.