ArticleOriginal scientific text

Title

Compactness of Hardy-type integral operators in weighted Banach function spaces

Authors 1, 2, 3, 4

Affiliations

  1. Centre for Mathematical Analysis and its Applications, The University of Sussex, Falmer, Brighton BN1 9QH, England
  2. Department of Mathematics, University of Agriculture, 160 21 Praha 6, Czech Republic
  3. School of Mathematics, University of Wales College of Cardiff, Senghenydd Road, Cardiff CF2 4AG, UK
  4. Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Praha 1, Czech Republic

Abstract

We consider a generalized Hardy operator Tf(x)=ϕ(x)ʃ0xψfv. For T to be bounded from a weighted Banach function space (X,v) into another, (Y,w), it is always necessary that the Muckenhoupt-type condition =R>0ϕχ(R,)Yψχ(0,R)X< be satisfied. We say that (X,Y) belongs to the category M(T) if this Muckenhoupt condition is also sufficient. We prove a general criterion for compactness of T from X to Y when (X,Y) ∈ M(T) and give an estimate for the distance of T from the finite rank operators. We apply the results to Lorentz spaces and characterize pairs of Lorentz spaces which fall into M (T).

Keywords

weighted Banach function space, Hardy-type operator, compact operator, Lorentz space

Bibliography

  1. [BS] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, 1988.
  2. [BER] E. I. Berezhnoǐ, Weighted inequalities of Hardy type in general ideal spaces, Soviet Math. Dokl. 43 (1991), 492-495.
  3. [B] J. S. Bradley, Hardy inequality with mixed norms, Canad. Math. Bull. 21 (1978), 405-408.
  4. [CHK] H.-M. Chung, R. A. Hunt and D. S. Kurtz, The Hardy-Littlewood maximal function on L(p,q) spaces with weights, Indiana Univ. Math. J. 31 (1982), 109-120.
  5. [EE] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Oxford Univ. Press, Oxford, 1987.
  6. [EEH] D. E. Edmunds, W. D. Evans and D. J. Harris, Approximation numbers of certain Volterra integral operators, J. London Math. Soc. 38 (1988), 471-489.
  7. [EH] W. D. Evans and D. J. Harris, Sobolev embeddings for generalized ridged domains, Proc. London Math. Soc. 54 (1987), 141-175.
  8. [H] R. A. Hunt, On L(p,q) spaces, Enseign. Math. 12 (1966), 249-276.
  9. [K] V. M. Kokilashvili, On Hardy's inequalities in weighted spaces, Soobshch. Akad. Nauk. Gruzin. SSR 96 (1979), 37-40 (in Russian).
  10. [LP] Q. Lai and L. Pick, The Hardy operator, L, and BMO, J. London Math. Soc. (2) 48 (1993), 167-177.
  11. [LUX] W. A. J. Luxemburg, Banach Function Spaces, thesis, Delft, 1955.
  12. [LZ] W. A. J. Luxemburg and A. C. Zaanen, Compactness of integral operators in Banach function spaces, Math. Ann. 149 (1963), 150-180.
  13. [M] V. G. Maz'ya, Sobolev Spaces, Springer, Berlin, 1985.
  14. [MU] B. Muckenhoupt, Hardy's inequality with weights, Studia Math. 44 (1972), 31-38.
  15. [OK] B. Opic and A. Kufner, Hardy-type Inequalities, Pitman Res. Notes Math. Ser. 219, Longman Sci. & Tech., Harlow, 1990.
  16. [S] E. T. Sawyer, Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator, Trans. Amer. Math. Soc. 281 (1984), 329-337.
  17. [T] G. Talenti, Osservazioni sopra una classe di disuguaglianze, Rend. Sem. Mat. Fis. Milano 39 (1969), 171-185.
  18. [TO] G. Tomaselli, A class of inequalities, Boll. Un. Mat. Ital. 21 (1969), 622-631.
Pages:
73-90
Main language of publication
English
Received
1993-06-01
Published
1994
Exact and natural sciences