ArticleOriginal scientific text

Title

Some spectral inequalities involving generalized scalar operators

Authors 1, 1

Affiliations

  1. Département de Mathématiques et de Statistique, Université Laval, Québec, Qué., Canada G1K 7P4

Abstract

In 1971, Allan Sinclair proved that for a hermitian element h of a Banach algebra and λ complex we have ∥λ + h∥ = r(λ + h), where r denotes the spectral radius. Using Levin's subordination theory for entire functions of exponential type, we extend this result locally to a much larger class of generalized spectral operators. This fundamental result improves many earlier results due to Gelfand, Hille, Colojoară-Foiaş, Vidav, Dowson, Dowson-Gillespie-Spain, Crabb-Spain, I. & V. Istrăţescu, Barnes, Pytlik, Boyadzhiev and others.

Bibliography

  1. G. R. Allan and T. J. Ransford, Power-dominated elements in a Banach algebra, Studia Math. 94 (1989), 63-79.
  2. C. Apostol, Teorie spectrală şi calcul functional, Stud. Cerc. Mat. 20 (1968), 635-668.
  3. B. Aupetit, A Primer on Spectral Theory, Springer, 1991.
  4. B. Aupetit and D. Drissi, Local spectrum theory revisited, to appear.
  5. B. A. Barnes, Operators which satisfy polynomial growth conditions, Pacific J. Math. 138 (1987), 209-219.
  6. R. G. Bartle and C. A. Kariotis, Some localizations of the spectral mapping theorem, Duke Math. J. 40 (1973), 651-660.
  7. R. P. Boas, Entire Functions, Academic Press, 1954.
  8. B. Bollobás, A property of hermitian elements, J. London Math. Soc. 4 (1971), 379-380.
  9. F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge University Press, 1971.
  10. F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, Cambridge University Press, 1973.
  11. F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973.
  12. H. N. Bojadjiev [K. N. Boyadzhiev], New applications of Bernstein inequality to the theory of operators: a local Sinclair lemma and a generalization of the Fuglede-Putnam theorem, in: Complex Analysis and Applications 85, Sofia, 1986, 97-104.
  13. H. N. Bojadjiev [K. N. Boyadzhiev], Sinclair type inequalities for the local spectral radius and related topics, Israel J. Math. 57 (1987), 272-284.
  14. A. Browder, On Bernstein's inequality and the norm of hermitian operators, Amer. Math. Monthly 78 (1971), 871-873.
  15. I. Colojoară and C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, 1968.
  16. M. J. Crabb and P. G. Spain, Commutators and normal operators, Glasgow Math. J. 18 (1977), 197-198.
  17. H. R. Dowson, Some properties of prespectral operators, Proc. Roy. Irish Acad. 74 (1974), 207-221.
  18. H. R. Dowson, T. A. Gillespie and P. G. Spain, A commutativity theorem for hermitian operators, Math. Ann. 220 (1976), 215-217.
  19. D. Drissi, Quelques inégalités spectrales pour les opérateurs scalaires généralisés, Ph.D. thesis, Université Laval, 1993.
  20. I. Erdelyi and R. Lange, Spectral Decompositions on Banach Spaces, Lecture Notes in Math. 623, Springer, 1977.
  21. C. Foiaş, Une application des distributions vectorielles à la théorie spectrale, Bull. Sci. Math. 84 (1960), 147-158.
  22. C. K. Fong, Normal operators on Banach spaces, Glasgow Math. J. 20 (1979), 163-168.
  23. I. Gelfand, Zur theorie der Charaktere der abelschen topologischen Gruppen, Rec. Math. N.S. (Mat. Sb.) 9 (51) (1941), 49-50.
  24. E. Hille, On the theory of characters of groups and semi-groups in normed vector rings, Proc. Nat. Acad. Sci. 30 (1944), 58-60.
  25. E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc. Colloq. Publ. 31, 1957.
  26. I. Istrăţescu and V. Istrăţescu, A note on the Weyl's spectrum of an operator, Rev. Roumaine Math. Pures Appl. 15 (1970), 1445-1447.
  27. V. È. Kacnel'son [V. È. Katsnel'son], A conservative operator has norm equal to its spectral radius, Mat. Issled. 5 (3) (17) (1970), 186-189 (in Russian).
  28. S. Kantorovitz, Classification of operators by means of their operational calculus, Trans. Amer. Math. Soc. 115 (1965), 194-224.
  29. G. K. Leaf, A spectral theory for a class of linear operators, Pacific J. Math. 13 (1963), 141-155.
  30. B. Ja. Levin, Distribution of Zeros of Entire Functions, Amer. Math. Soc., 1964.
  31. T. Pytlik, Analytic semigroups in Banach algebras and a theorem of Hille, Colloq. Math. 51 (1987), 287-294.
  32. F. Riesz et B. Sz.-Nagy, Leçons d'analyse fonctionnelle, Acad. Sci. Hongrie, Szeged, 1955.
  33. W. Rudin, Functional Analysis, McGraw-Hill, 1973.
  34. A. M. Sinclair, The norm of a hermitian element in a Banach algebra, Proc. Amer. Math. Soc. 28 (1971), 446-450.
  35. D. R. Smart, Conditionally convergent expansions, J. Austral. Math. Soc. 1 (1960), 319-333.
  36. B. G. Tillman, Vector-valued distributions and the spectral theorem for self-adjoint operators in Hilbert space, Bull. Amer. Math. Soc. 69 (1963), 67-71.
  37. I. Vidav, Eine metrische Kennzeichnung der selbstadjungierten Operatoren, Math. Z. 66 (1956), 121-128.
  38. P. Vrbová, On local spectral properties of operators in Banach spaces, Czechoslovak Math. J. 23 (1973), 483-492.
  39. K. K. Warner, A note on a theorem of Weyl, Proc. Amer. Math. Soc. 23 (1969), 469-471.
  40. F. Wolf, Operators in Banach space which admit a generalized spectral decomposition, Nederl. Akad. Wetensch. Indag. Math. 19 (1957), 302-311.
Pages:
51-66
Main language of publication
English
Received
1993-01-07
Accepted
1993-06-09
Published
1994
Exact and natural sciences