ArticleOriginal scientific text
Title
On the best constant in the Khinchin-Kahane inequality
Authors 1, 2
Affiliations
- Department of Mathematics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland
- Department of Mathematics, Warsaw University Banacha 2, 02-097 Warsaw, Poland.
Abstract
We prove that if is the Rademacher system of functions then
for any sequence of vectors in any normed linear space F.
Bibliography
- U. Haagerup, The best constants in the Khintchine inequality, Studia Math. 70 (1982), 231-283.
- J.-P. Kahane, Sur les sommes vectorielles
, C. R. Acad. Sci. Paris 259 (1964), 2577-2580. - A. Khintchine [A. Khinchin], Über dyadische Brüche, Math. Z. 18 (1923), 109-116.
- S. J. Szarek, On the best constants in the Khinchin inequality, Studia Math. 58 (1976), 197-208.
- B. Tomaszewski, Two remarks on the Khintchin-Kahane inequality, Colloq. Math. 46 (1982), 283-288.
- B. Tomaszewski, A simple and elementary proof of the Khintchine inequality with the best constant, Bull. Sci. Math. (2) 111 (1987), 103-109.