ArticleOriginal scientific text

Title

On the best constant in the Khinchin-Kahane inequality

Authors 1, 2

Affiliations

  1. Department of Mathematics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland
  2. Department of Mathematics, Warsaw University Banacha 2, 02-097 Warsaw, Poland.

Abstract

We prove that if ri is the Rademacher system of functions then (ʃi=1nxiri(t)2dt)122ʃi=1nxiri(t)dt for any sequence of vectors xi in any normed linear space F.

Bibliography

  1. U. Haagerup, The best constants in the Khintchine inequality, Studia Math. 70 (1982), 231-283.
  2. J.-P. Kahane, Sur les sommes vectorielles ±un, C. R. Acad. Sci. Paris 259 (1964), 2577-2580.
  3. A. Khintchine [A. Khinchin], Über dyadische Brüche, Math. Z. 18 (1923), 109-116.
  4. S. J. Szarek, On the best constants in the Khinchin inequality, Studia Math. 58 (1976), 197-208.
  5. B. Tomaszewski, Two remarks on the Khintchin-Kahane inequality, Colloq. Math. 46 (1982), 283-288.
  6. B. Tomaszewski, A simple and elementary proof of the Khintchine inequality with the best constant, Bull. Sci. Math. (2) 111 (1987), 103-109.
Pages:
101-104
Main language of publication
English
Received
1993-11-02
Accepted
1993-11-30
Published
1994
Exact and natural sciences