ArticleOriginal scientific text

Title

Triebel-Lizorkin spaces on spaces of homogeneous type

Authors 1, 2

Affiliations

  1. University if Windsor, Windsor, Ontario, N9B 3P4, Canada
  2. Department of Mathematics, Auburn University, Auburn, Alabama 36849-5310, U.S.A.

Abstract

In [HS] the Besov and Triebel-Lizorkin spaces on spaces of homogeneous type were introduced. In this paper, the Triebel-Lizorkin spaces on spaces of homogeneous type are generalized to the case where p0<p1q<, and a new atomic decomposition for these spaces is obtained. As a consequence, we give the Littlewood-Paley characterization of Hardy spaces on spaces of homogeneous type which were introduced by the maximal function characterization in [MS2].

Keywords

spaces of homogeneous type, Hp and Triebel-Lizorkin spaces, Littlewood-Paley S-function, atomic decomposition

Bibliography

  1. [CF] S.-Y. A. Chang and R. Fefferman, The Calderón-Zygmund decomposition on product domains, Amer. J. Math. 104 (1982), 445-468.
  2. [Ch] M. Christ, A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), 601-628.
  3. [CW1] R. Coifman et G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971.
  4. [CW2] R. Coifman et G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
  5. [DJS] G. David, J.-L. Journé et S. Semmes, Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoamericana 1 (1985), 1-56.
  6. [FJ] M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), 34-170.
  7. [H1] Y.-S. Han, On the Hardy-type spaces, Chinese Quart. J. Math. 1 (1986), 42-64.
  8. [H2] Y.-S. Han, The Calderón reproducing formula and the Tb theorem, Rev. Mat. Iberoamericana, to appear.
  9. [HS] Y.-S. Han and E. T. Sawyer, Littlewood-Paley theory on spaces of homogeneous type and classical function spaces, Mem. Amer. Math. Soc., to appear.
  10. [M] Y. Meyer, Les nouveaux opérateurs de Calderón-Zygmund, Astérisque 131 (1985), 237-254.
  11. [MS1] R. A. Macías and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), 257-270.
  12. [MS2] R. A. Macías and C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, ibid., 271-309.
  13. [TW] M. Taibleson and G. Weiss, The molecular characterization of certain Hardy spaces, Astérisque 77 (1980), 67-149.
Pages:
247-273
Main language of publication
English
Received
1993-02-06
Accepted
1993-09-08
Published
1994
Exact and natural sciences