ArticleOriginal scientific text

Title

Two-weight norm inequalities for the fractional maximal operator on spaces of homogeneous type

Authors 1, 1

Affiliations

  1. Programa Especial de Matemática Aplicada, Universidad Nacional del Litoral, Güemes 3450, 3000 Santa Fe, Argentina

Abstract

We give a characterization of the pairs of weights (v,w), with w in the class A of Muckenhoupt, for which the fractional maximal function is a bounded operator from Lp(X,vdμ) to Lq(X,wdμ) when 1 < p ≤ q < ∞ and X is a space of homogeneous type.

Bibliography

  1. [AM] H. Aimar and R. Macías, Weighted norm inequalities for the Hardy-Littlewood maximal operator on spaces of homogeneous type, Proc. Amer. Math. Soc. 91 (1984), 213-216.
  2. [C] A. Calderón, Inequalities for the maximal function relative to a metric, Studia Math. 57 (1976), 297-306.
  3. [CF] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, ibid. 51 (1974), 241-250.
  4. [CW] R. Coifman et G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971.
  5. [MS1] R. Macías and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), 257-270.
  6. [MS2] R. Macías and C. Segovia, A well behaved quasi-distance for spaces of homogeneous type, Trabajos de Matemática, no. 32, Inst. Argentino de Matemática, 1981.
  7. [MT] R. Macías and J. L. Torrea, L² and Lp boundedness of singular integrals on not necessarily normalized spaces of homogeneous type, Cuadernos de Matemática y Mecánica, PEMA-GTM-INTEC, no. 1-88, 1988.
  8. [MW] B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261-274.
  9. [P] C. Perez, Two weighted norm inequalities for Riesz potentials and uniform Lp-weighted Sobolev inequalities, Indiana Univ. Math. J. 39 (1990), 31-44.
  10. [SW] E. Sawyer and R. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. 114 (1992), 813-874.
  11. [W] R. Wheeden, A characterization of some weighted norm inequalities for the fractional maximal function, Studia Math. 107 (1993), 257-272.
Pages:
201-207
Main language of publication
English
Received
1991-10-18
Accepted
1993-07-06
Published
1994
Exact and natural sciences