ArticleOriginal scientific text

Title

Spectrum of multidimensional dynamical systems with positive entropy

Authors 1, 2

Affiliations

  1. Institute of Mathematics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
  2. Groupe de Théorie des Nombres, Université de Provence, 3, Place Victor Hugo, F-13331 Marseille Cedex 3, France

Abstract

Applying methods of harmonic analysis we give a simple proof of the multidimensional version of the Rokhlin-Sinaǐ theorem which states that a Kolmogorov d-action on a Lebesgue space has a countable Lebesgue spectrum. At the same time we extend this theorem to -actions. Next, using its relative version, we extend to -actions some other general results connecting spectrum and entropy.

Bibliography

  1. [G] F. P. Greenleaf, Invariant Means on Topological Groups, Van Nostrand Math. Stud. 16, 1969.
  2. [H] H. Helson, Lectures on Invariant Subspaces, Academic Press, 1964.
  3. [HR] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Springer, 1963.
  4. [Ka] B. Kamiński, The theory of invariant partitions for d-actions, Bull. Polish Acad. Sci. Math. 29 (1981), 349-362.
  5. [Ki1] J. C. Kieffer, A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space, Ann. Probab. 3 (1975), 1031-1037.
  6. [Ki2] J. C. Kieffer, The isomorphism theorem for generalized Bernoulli schemes, in: Studies in Probability and Ergodic Theory, Adv. in Math. Suppl. Stud. 2, Academic Press, 1978, 251-267.
  7. [Kir] A. A. Kirillov, Dynamical systems, factors and representations of groups, Uspekhi Mat. Nauk 22 (5) (1967), 67-80 (in Russian).
  8. [MN] V. Mandrekar and M. Nadkarni, Quasi-invariance of analytic measures on compact groups, Bull. Amer. Math. Soc. 73 (1967), 915-920.
  9. [Pa] W. Parry, Topics in Ergodic Theory, Cambridge University Press, 1981.
  10. [Pi] B. S. Pitskel', On informational futures of amenable groups, Dokl. Akad. Nauk SSSR 223 (1975), 1067-1070 (in Russian).
  11. [RS] V. A. Rokhlin and Ya. G. Sinaǐ, Construction and properties of invariant measurable partitions, ibid. 141 (1961), 1038-1041 (in Russian).
  12. [Ro] A. Rosenthal, Uniform generators for ergodic finite entropy free actions of amenable groups, Probab. Theory Related Fields 77 (1988), 147-166.
  13. [Ru] W. Rudin, Fourier Analysis on Groups, Interscience, New York, 1962.
  14. [T] J. P. Thouvenot, Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l'un est un schéma de Bernoulli, Israel J. Math. 21 (1975), 177-207.
Pages:
77-85
Main language of publication
English
Received
1993-03-03
Published
1994
Exact and natural sciences