Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let $M_z$ be the operator of multiplication by z on a Banach space of functions analytic on a plane domain G. We say that $M_z$ is polynomially bounded if $∥M_p∥ ≤ C∥p∥_G$ for every polynomial p. We give necessary and sufficient conditions for $M_z$ to be polynomially bounded. We also characterize the finite-codimensional invariant subspaces and derive some spectral properties of the multiplication operator in case the underlying space is Hilbert.
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
49-54
Opis fizyczny
Daty
wydano
1994
otrzymano
1992-10-13
poprawiono
1993-07-05
Twórcy
autor
- Department of Mathematics & Statistics, College of Sciences, Shiraz University, Shiraz 71454, Islamic Republic of Iran
Bibliografia
- [1] G. Adams, P. McGuire and V. Paulsen, Analytic reproducing kernels and multiplication operators, Illinois J. Math. 36 (1992), 404-419.
- [2] H. Hedenmalm and A. Shields, Invariant subspaces in Banach spaces of analytic functions, Michigan Math. J. 37 (1990), 91-104.
- [3] S. Richter, Invariant subspaces in Banach spaces of analytic functions, Trans. Amer. Math. Soc. 304 (1987), 585-616.
- [4] D. Sarason, Weak-star generators of $H^∞$, Pacific J. Math. 17 (1966), 519-528.
- [5] K. Seddighi and B. Yousefi, On the reflexivity of operators on function spaces, Proc. Amer. Math. Soc. 116 (1992), 45-52.
- [6] H. Shapiro, Reproducing kernels and Beurling's theorem, Trans. Amer. Math. Soc. 110 (1964), 448-458.
- [7] A. Shields and L. Wallen, The commutants of certain Hilbert space operators, Indiana Univ. Math. J. 20 (1971), 777-788.
- [8] A. M. Sinclair, Automatic Continuity of Linear Operators, London Math. Soc. Lecture Note Ser. 21, Cambridge Univ. Press, 1976.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-smv108i1p49bwm